【机器学习】层次聚类-Agglomerative clustering
Agglomerative clustering从 N N N个簇开始,每个簇最初只包含一个对象,然后在每个步骤中合并两个最相似的簇,直到形成一个包含所有数据的簇。
合并过程可以用二叉树(binary tree) 表示,称为树状图(dendrogram)。初始簇位于叶节点(图的底部),每当两个簇合并时,我们就将它们联接到树中。分支的高度表示正在加入的簇之间的差异。树的根(在顶部)表示包含所有数据的簇。如果我们在任何给定的高度砍树,我们会得到一个给定大小的集群。

实际上,根据我们如何定义不同簇之间的差异,Aggl