多元函数第四:欧式几何(1)柯西不等式(Cauchy不等式),三角不等式

本文介绍了欧式几何中的重要不等式——柯西不等式及其证明,展示了其在证明其他定理中的价值。柯西不等式表述了n维空间中任意两个向量的内积绝对值不超过它们2范数的乘积。通过柯西不等式可以导出三角不等式,并进一步引出余弦定理,为理解和应用欧式几何提供基础。
摘要由CSDN通过智能技术生成

柯西不等式是欧式几何中最基本,也是最重要的不等式。它的重要之处,不仅在于该结论本身应用之广泛;也在于它的证明思想对于其他定理的证明,有极大的借鉴意义。例如,在以后介绍的凸集的支撑超平面定理中,就会用到柯西不等式的证明思想。

柯西(Cauchy)不等式:对于n维空间上的任意两个向量 x x x y y y都有
∣ x T y ∣ ≤ ∣ x ∣ ∣ y ∣ |x^Ty|\leq |x||y| xTyxy
其中
x T y = ∑ i = 1 n x i y i x^Ty=\sum_{i=1}^nx_iy_i xTy=i=1nxiyi
是向量 x x x y y y的內积, ∣ x ∣ |x| x是向量 x x x的2范数,也即
∣ x ∣ = x T x = ∑ i = 1 n x i 2 . |x|=\sqrt{x^Tx}=\sqrt{\sum_{i=1}^nx_i^2}. x=xTx =i=1nxi2 .

注意. 在我们的符号中,当 a ∈ R a\in\mathbb{R} aR时, ∣ a ∣ |a| a表示 a a a的绝对值。例如 x T y x^Ty xTy就是內积 x T y x^Ty x

  • 2
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值