Adam 在批量随机梯度的基础上,充分吸收了RMSprop + Momentum思想,其中RMSprop 是在AdaGrad的基础上改进的,AdaGrad累积历史梯度平方,当历史梯度变化比较频繁时(即某一维度的梯度呈正或负方向频次比较多),那么更新的步长比较小;当历史梯度比较稀疏时(即某一维度的梯度为0频次比较多),那么更新的步长比较大。
AdaGrad公式如下所示:
g t g_{t} gt是批量随机平均梯度,是在SGD基础上加入了批量平均梯度的思想,这里不再赘述。
AdaGrad其优点:在数据分布稀疏的场景,能更好利用稀疏梯度的信息,比标准的SGD算法更有效地收敛。其缺点也显而易见,随之时间步地增加,分母项越来越大,最终导致学习率收缩到太小无法进行有效更新,虽然达到了模拟退火的目的,但是难免会太快了。RMSprop 既吸收部分累积的历史梯度平方,又吸收了部分当前梯度平方,这两种吸收的比例和为1,体现了平均梯度的思想。由于累积平方梯度只吸收部分当前累积平方梯度和当前平方梯度,所以RMSprop的累积平方梯度会小于AdaGrad的累积平方梯度,大大延迟的模拟退火时间。
RMSprop公式如下:
RMSprop的参数更新公式与AdaGrad很相似,只是AdaGrad采用了累积平方梯度,而RMSprop则丢失部分历史累积平方梯度,能够克服AdaGrad梯度急剧减小的问题,在很多应用中都展示出优秀的学习率自适应能力。尤其在不稳定(Non-Stationary)的目标函数下,比基本的SGD、Momentum、AdaGrad表现更良好。
Momentum的思想是累积历史步长(也可以说是历史梯度,因为步长和梯度是呈正比的,其比例系数就是固定的学习率,所以步长也是矢量,个人觉得步长用位移来代替会更合适),当频繁出现正负交替的梯度时,它们会抵消,故累积历史步长会变小,从而达到抑制震荡的效果。Momentum公式如下:
γ \gamma γ动量系数,默认为0.9, η \eta η学习率,默认为0.001, v t v_{t} v