1. 概念
残差平方和(SSR,Sum of Squared Residuals)是统计学和回归分析中的一个指标,用于评估模型拟合数据的效果。
它表示数据点与模型预测值之间的差异(即残差)的平方和,公式为:
:实际值
:模型预测值
- n:样本数量
2. 残差平方和的意义
- 衡量拟合质量:SSR 越小,说明模型预测值与实际值越接近,拟合效果越好。
- 模型优化目标:许多回归模型(如最小二乘法)通过最小化 SSR 来确定模型参数。
3. 相关指标
-
总平方和(SST, Total Sum of Squares)&#x