【机器学习】基础知识:SSR-残差平方和(Sum of Squared Residuals)

1. 概念

残差平方和(SSR,Sum of Squared Residuals)是统计学和回归分析中的一个指标,用于评估模型拟合数据的效果。
它表示数据点与模型预测值之间的差异(即残差)的平方和,公式为:

SSR = \sum_{i=1}^n (y_i - \hat{y}_i)^2

  • y_i:实际值
  • \hat{y}_i​:模型预测值
  • n:样本数量

2. 残差平方和的意义
  1. 衡量拟合质量:SSR 越小,说明模型预测值与实际值越接近,拟合效果越好。
  2. 模型优化目标:许多回归模型(如最小二乘法)通过最小化 SSR 来确定模型参数。

3. 相关指标
  • 总平方和(SST, Total Sum of Squares)&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值