【漫话机器学习系列】091.置信区间(Confidence Intervals)

置信区间(Confidence Intervals)详解

1. 引言

在统计学和数据分析中,我们通常希望通过样本数据来估计总体参数。然而,由于抽样的随机性,我们不可能得到精确的总体参数,而只能通过估计值(如均值、回归系数)来进行推断。置信区间(Confidence Interval, CI)提供了一种方法来衡量估计的不确定性,它告诉我们:在一定的置信水平下,真实参数值可能落在某个范围内

本文将详细介绍置信区间的概念、数学公式、计算方法以及实际应用,并结合图示的内容进行解释。


2. 置信区间的定义

2.1 什么是置信区间?

置信区间是对总体参数(如均值或回归系数)的区间估计,它提供了一个范围,使得该范围内包含真实参数的概率达到某个置信水平(confidence level)。

例如,95% 置信区间意味着:

  • 如果我们重复进行相同的实验 100 次,每次计算一个新的置信区间,
  • 那么这 100 个置信区间中,大约有 95 个 会包含真实的总体参数值。
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值