置信区间(Confidence Interval, CI) 是统计学中用于估计总体参数的范围。它给出了一个区间,并且这个区间包含总体参数的概率等于某个指定的置信水平(通常是 90%、95% 或 99%)。与点估计不同,置信区间通过区间估计给出了参数的可能范围,从而提供了更可靠的信息。
1. 定义
置信区间是用于估计总体参数(如均值、比例等)的一个区间。与点估计(即单个估计值)不同,置信区间提供了一系列可能包含总体参数的值,并伴随着一定的置信水平。
置信区间可以看作是一个范围,表示我们对这个范围包含真实参数值的信心程度。例如,给定 95% 的置信水平,置信区间表示我们有 95% 的信心认为该区间包含总体参数。
2. 置信水平
置信水平(Confidence Level) 表示区间包含总体参数的概率。通常使用的置信水平有 90%、95%、99% 等。置信水平越高,置信区间越宽,表示我们更有把握认为总体参数落在该区间内。
3. 置信区间的计算
对于总体均值 μ \mu μ,当样本量较大且样本均值服从正态分布时,置信区间可以通过以下公式计算:
置信区间 = ( X ‾ − z α / 2 ⋅ σ n , X ‾ + z α / 2 ⋅ σ n ) \text{置信区间} = \left( \overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right) 置信区间=(X−zα/2⋅nσ,