SVM支持向量机-手写笔记(超详细:拉格朗日乘数法、KKT条件、对偶性质、最优化、合页损失、核函数...)

SVM支持向量机-手写笔记


作者:某丁
日期:2021.05.21


1

2

3

4

5

6

7

8

9


写完了,发现想要真正理解SVM还需要继续深入学习,以上所写只不过是冰山一角,我的管中窥豹而已。


参考

[1] 一文搞懂支持向量机(SVM)算法
https://zhuanlan.zhihu.com/p/52168498

[2] 标准化和归一化,请勿混为一谈,透彻理解数据变换
https://blog.csdn.net/weixin_36604953/article/details/102652160

[3] 数据标准化/归一化normalization
https://blog.csdn.net/pipisorry/article/details/52247379

[4] L1归一化和L2归一化范数的详解和区别
https://blog.csdn.net/u014381600/article/details/54341317

[5] 关于机器学习特征归一化的理解
https://zhuanlan.zhihu.com/p/94696574

[6] 浅谈最优化问题的KKT条件
https://zhuanlan.zhihu.com/p/26514613

[7] 凸优化中的强对偶性和弱对偶性的几何解释是怎样的?

  • 赵来福的回答 - 知乎
    https://www.zhihu.com/question/26128817/answer/308180470
  • shuhuai008的回答 - 知乎
    https://www.zhihu.com/question/26128817/answer/756870131

[8] 矩阵求导、几种重要的矩阵及常用的矩阵求导公式
https://blog.csdn.net/daaikuaichuan/article/details/80620518

[9] svm惩罚因子c的理解
https://blog.csdn.net/ustbbsy/article/details/82390281

[10] 怎么样理解SVM中的hinge-loss?

  • Slumbers的回答 - 知乎
    https://www.zhihu.com/question/47746939/answer/570590275
  • 十九的回答 - 知乎
    https://www.zhihu.com/question/47746939/answer/512177694

[11] 机器学习理论—损失函数(三):Hinge Loss
https://zhuanlan.zhihu.com/p/347456667

[12] 机器学习中常常提到的正则化到底是什么意思? - 刘遥行的回答 - 知乎
https://www.zhihu.com/question/20924039/answer/240037674

[13] 支持向量机 (二): 软间隔 svm 与 核函数
https://www.cnblogs.com/massquantity/p/11110397.html

[14] 对核函数(kernel)最通俗易懂的理解
https://blog.csdn.net/qq_39521554/article/details/80605178


END | 喜欢点个赞👍| ❤️
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值