SVM支持向量机-手写笔记
作者:某丁
日期:2021.05.21
写完了,发现想要真正理解SVM还需要继续深入学习,以上所写只不过是冰山一角,我的管中窥豹而已。
参考
[1] 一文搞懂支持向量机(SVM)算法
https://zhuanlan.zhihu.com/p/52168498
[2] 标准化和归一化,请勿混为一谈,透彻理解数据变换
https://blog.csdn.net/weixin_36604953/article/details/102652160
[3] 数据标准化/归一化normalization
https://blog.csdn.net/pipisorry/article/details/52247379
[4] L1归一化和L2归一化范数的详解和区别
https://blog.csdn.net/u014381600/article/details/54341317
[5] 关于机器学习特征归一化的理解
https://zhuanlan.zhihu.com/p/94696574
[6] 浅谈最优化问题的KKT条件
https://zhuanlan.zhihu.com/p/26514613
[7] 凸优化中的强对偶性和弱对偶性的几何解释是怎样的?
- 赵来福的回答 - 知乎
https://www.zhihu.com/question/26128817/answer/308180470 - shuhuai008的回答 - 知乎
https://www.zhihu.com/question/26128817/answer/756870131
[8] 矩阵求导、几种重要的矩阵及常用的矩阵求导公式
https://blog.csdn.net/daaikuaichuan/article/details/80620518
[9] svm惩罚因子c的理解
https://blog.csdn.net/ustbbsy/article/details/82390281
[10] 怎么样理解SVM中的hinge-loss?
- Slumbers的回答 - 知乎
https://www.zhihu.com/question/47746939/answer/570590275 - 十九的回答 - 知乎
https://www.zhihu.com/question/47746939/answer/512177694
[11] 机器学习理论—损失函数(三):Hinge Loss
https://zhuanlan.zhihu.com/p/347456667
[12] 机器学习中常常提到的正则化到底是什么意思? - 刘遥行的回答 - 知乎
https://www.zhihu.com/question/20924039/answer/240037674
[13] 支持向量机 (二): 软间隔 svm 与 核函数
https://www.cnblogs.com/massquantity/p/11110397.html
[14] 对核函数(kernel)最通俗易懂的理解
https://blog.csdn.net/qq_39521554/article/details/80605178