Datawhale X 李宏毅苹果书AI夏令营 任务二

自适应学习率

ADaGrad

梯度比较大的时候,学习率就减小,梯度比较小的时候,学习率就放大。

在这里插入图片描述

RMSProp

同一个参数的同个方向,学习率也是需要动态调整的

在这里插入图片描述

Adam

Adam 可以看作 RMSprop 加上动量,其使用动量作为参数更新方向,并且能够自适应调整学习率。

学习率调度

学习率调度中最常见的策略是学习率衰减(learning rate decay),也称为学习率退火(learning rateannealing)。

除了学习率下降以外,还有另外一个经典的学习率调度的方式———预热。预热的方法是让学习率先变大后变小.

分类

softmax

最小化交叉熵=最大化似然

在这里插入图片描述

实战:图像分类

模型

def __init__(self):
        """
        初始化函数,构建卷积神经网络的结构。
        包含一系列的卷积层、批归一化层、激活函数和池化层。
        """
        super(Classifier, self).__init__()
        # 定义卷积神经网络的序列结构
        self.cnn = nn.Sequential(
            nn.Conv2d(3, 64, 3, 1, 1),  # 输入通道3,输出通道64,卷积核大小3,步长1,填充1
            nn.BatchNorm2d(64),        # 批归一化,作用于64个通道
            nn.ReLU(),                 # ReLU激活函数
            nn.MaxPool2d(2, 2, 0),      # 最大池化,池化窗口大小2,步长2,填充0
            
            nn.Conv2d(64, 128, 3, 1, 1), # 输入通道64,输出通道128,卷积核大小3,步长1,填充1
            nn.BatchNorm2d(128),        # 批归一化,作用于128个通道
            nn.ReLU(),
            nn.MaxPool2d(2, 2, 0),      # 最大池化,池化窗口大小2,步长2,填充0
            
            nn.Conv2d(128, 256, 3, 1, 1), # 输入通道128,输出通道256,卷积核大小3,步长1,填充1
            nn.BatchNorm2d(256),        # 批归一化,作用于256个通道
            nn.ReLU(),
            nn.MaxPool2d(2, 2, 0),      # 最大池化,池化窗口大小2,步长2,填充0
            
            nn.Conv2d(256, 512, 3, 1, 1), # 输入通道256,输出通道512,卷积核大小3,步长1,填充1
            nn.BatchNorm2d(512),        # 批归一化,作用于512个通道
            nn.ReLU(),
            nn.MaxPool2d(2, 2, 0),       # 最大池化,池化窗口大小2,步长2,填充0
            
            nn.Conv2d(512, 512, 3, 1, 1), # 输入通道512,输出通道512,卷积核大小3,步长1,填充1
            nn.BatchNorm2d(512),        # 批归一化,作用于512个通道
            nn.ReLU(),
            nn.MaxPool2d(2, 2, 0),       # 最大池化,池化窗口大小2,步长2,填充0
        )
        # 定义全连接神经网络的序列结构
        self.fc = nn.Sequential(
            nn.Linear(512*4*4, 1024),    # 输入大小512*4*4,输出大小1024
            nn.ReLU(),
            nn.Linear(1024, 512),        # 输入大小1024,输出大小512
            nn.ReLU(),
            nn.Linear(512, 11)           # 输入大小512,输出大小11,最终输出11个类别的概率
        )
     
def forward(self, x):
        """
        前向传播函数,对输入进行处理。
        
        参数:
        x -- 输入的图像数据,形状为(batch_size, 3, 128, 128)
        
        返回:
        输出的分类结果,形状为(batch_size, 11)
        """
        out = self.cnn(x)               # 通过卷积神经网络处理输入
        out = out.view(out.size()[0], -1)  # 展平输出,以适配全连接层的输入要求
        return self.fc(out)             # 通过全连接神经网络得到最终输出

配置

# 根据GPU是否可用选择设备类型
device = "cuda" if torch.cuda.is_available() else "cpu"

# 初始化模型,并将其放置在指定的设备上
model = Classifier().to(device)

# 定义批量大小
batch_size = 64

# 定义训练轮数
n_epochs = 8

# 如果在'patience'轮中没有改进,则提前停止
patience = 5

# 对于分类任务,我们使用交叉熵作为性能衡量标准
criterion = nn.CrossEntropyLoss()

# 初始化优化器,您可以自行调整一些超参数,如学习率
optimizer = torch.optim.Adam(model.parameters(), lr=0.0003, weight_decay=1e-5)

加载数据

# 构建训练和验证数据集
# "loader" 参数定义了torchvision如何读取数据
train_set = FoodDataset("./hw3_data/train", tfm=train_tfm)
# 创建训练数据加载器,设置批量大小、是否打乱数据顺序、是否使用多线程加载以及是否固定内存地址
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=True)
# 构建验证数据集
# "loader" 参数定义了torchvision如何读取数据
valid_set = FoodDataset("./hw3_data/valid", tfm=test_tfm)
# 创建验证数据加载器,设置批量大小、是否打乱数据顺序、是否使用多线程加载以及是否固定内存地址
valid_loader = DataLoader(valid_set, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=True)

开始训练

# 初始化追踪器,这些不是参数,不应该被更改
stale = 0
best_acc = 0

for epoch in range(n_epochs):
    # ---------- 训练阶段 ----------
    # 确保模型处于训练模式
    model.train()

    # 这些用于记录训练过程中的信息
    train_loss = []
    train_accs = []

    for batch in tqdm(train_loader):
        # 每个批次包含图像数据及其对应的标签
        imgs, labels = batch
        # imgs = imgs.half()
        # print(imgs.shape,labels.shape)

        # 前向传播数据。(确保数据和模型位于同一设备上)
        logits = model(imgs.to(device))

        # 计算交叉熵损失。
        # 在计算交叉熵之前不需要应用softmax,因为它会自动完成。
        loss = criterion(logits, labels.to(device))

        # 清除上一步中参数中存储的梯度
        optimizer.zero_grad()

        # 计算参数的梯度
        loss.backward()

        # 为了稳定训练,限制梯度范数
        grad_norm = nn.utils.clip_grad_norm_(model.parameters(), max_norm=10)

        # 使用计算出的梯度更新参数
        optimizer.step()

        # 计算当前批次的准确率
        acc = (logits.argmax(dim=-1) == labels.to(device)).float().mean()

        # 记录损失和准确率
        train_loss.append(loss.item())
        train_accs.append(acc)

    train_loss = sum(train_loss) / len(train_loss)
    train_acc = sum(train_accs) / len(train_accs)

    # 打印信息
    print(f"[ 训练 | {epoch + 1:03d}/{n_epochs:03d} ] loss = {train_loss:.5f}, acc = {train_acc:.5f}")

    # ---------- 验证阶段 ----------
    # 确保模型处于评估模式,以便某些模块如dropout能够正常工作
    model.eval()

    # 这些用于记录验证过程中的信息
    valid_loss = []
    valid_accs = []

    # 按批次迭代验证集
    for batch in tqdm(valid_loader):
        # 每个批次包含图像数据及其对应的标签
        imgs, labels = batch
        # imgs = imgs.half()

        # 我们在验证阶段不需要梯度。
        # 使用 torch.no_grad() 加速前向传播过程。
        with torch.no_grad():
            logits = model(imgs.to(device))

        # 我们仍然可以计算损失(但不计算梯度)。
        loss = criterion(logits, labels.to(device))

        # 计算当前批次的准确率
        acc = (logits.argmax(dim=-1) == labels.to(device)).float().mean()

        # 记录损失和准确率
        valid_loss.append(loss.item())
        valid_accs.append(acc)
        # break

    # 整个验证集的平均损失和准确率是所记录值的平均
    valid_loss = sum(valid_loss) / len(valid_loss)
    valid_acc = sum(valid_accs) / len(valid_accs)

    # 打印信息
    print(f"[ 验证 | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f}")

    # 更新日志
    if valid_acc > best_acc:
        with open(f"./{_exp_name}_log.txt", "a"):
            print(f"[ 验证 | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f} -> 最佳")
    else:
        with open(f"./{_exp_name}_log.txt", "a"):
            print(f"[ 验证 | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f}")

    # 保存模型
    if valid_acc > best_acc:
        print(f"在第 {epoch} 轮找到最佳模型,正在保存模型")
        torch.save(model.state_dict(), f"{_exp_name}_best.ckpt")  # 只保存最佳模型以防止输出内存超出错误
        best_acc = valid_acc
        stale = 0
    else:
        stale += 1
        if stale > patience:
            print(f"连续 {patience} 轮没有改进,提前停止")
            break

测试

# 实例化分类器模型,并将其转移到指定的设备上
model_best = Classifier().to(device)

# 加载模型的最优状态字典
model_best.load_state_dict(torch.load(f"{_exp_name}_best.ckpt"))

# 将模型设置为评估模式
model_best.eval()

# 初始化一个空列表,用于存储所有预测标签
prediction = []

# 使用torch.no_grad()上下文管理器,禁用梯度计算
with torch.no_grad():
    # 遍历测试数据加载器
    for data, _ in tqdm(test_loader):
        # 将数据转移到指定设备上,并获得模型的预测结果
        test_pred = model_best(data.to(device))
        # 选择具有最高分数的类别作为预测标签
        test_label = np.argmax(test_pred.cpu().data.numpy(), axis=1)
        # 将预测标签添加到结果列表中
        prediction += test_label.squeeze().tolist()

数据增强

train_tfm = transforms.Compose([
    # 将图像调整为固定的尺寸(高度 = 宽度 = 128)
    transforms.Resize((128, 128)),
    # 你可以在这里添加一些数据转换操作
    transforms.ToTensor(),
])

t-SNE可视化

from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
import matplotlib.cm as cm
import torch

def forward_to_layer(model, input_tensor, layer_index):
    outputs = []
    for i, layer in enumerate(model.children()):
        input_tensor = layer(input_tensor)
        if i == layer_index:
            break
        outputs.append(input_tensor)
    return outputs[-1]  # 返回所选层的输出

# 假设model, test_tfm, FoodDataset, DataLoader已经被定义且正确初始化

# 加载由TA定义的验证集
valid_set = FoodDataset("./hw3_data/valid", tfm=test_tfm)
valid_loader = DataLoader(valid_set, batch_size=64, shuffle=False, num_workers=0, pin_memory=True)

# 提取模型特定层的表示
index = 19  # 假设你想提取第19层的特征
features = []
labels = []

# 定义设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

for batch in tqdm(valid_loader):
    imgs, lbls = batch
    imgs, lbls = imgs.to(device), lbls.to(device)  # 确保数据在正确的设备上
    with torch.no_grad():
        # 获取特定层的特征
        logits = forward_to_layer(model.cnn, imgs, index)
        logits = logits.view(logits.size(0), -1)
    labels.extend(lbls.cpu().numpy())
    features.extend(logits.cpu().numpy())

# 将features和labels列表转换为numpy数组
features = np.array(features)
labels = np.array(labels)

# 应用t-SNE到特征上
features_tsne = TSNE(n_components=2, init='pca', random_state=42).fit_transform(features)

# 绘制t-SNE可视化图
plt.figure(figsize=(10, 8))
for label in np.unique(labels):
    # 使用布尔索引选择特定标签的数据点
    mask = (labels == label)
    plt.scatter(features_tsne[mask, 0], features_tsne[mask, 1], label=f'Class {label}', s=5)
plt.legend()
plt.title('All Classes t-SNE Visualization')
plt.show()

# 绘制特定类别的t-SNE可视化图
plt.figure(figsize=(10, 8))
selected_label = 5
mask = (labels == selected_label)
if mask.any():  # 使用 .any() 替代 .sum() 来检查是否有True值
    plt.scatter(features_tsne[mask, 0], features_tsne[mask, 1], label=f'Class {selected_label}', s=5)
plt.legend()
plt.title(f'Class {selected_label} t-SNE Visualization')
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值