YOLOv8 Series: Combining YOLOv with RepVGG for a Minimal yet Powerful Re-parameterized Model Structure in Computer Vision
计算机视觉中的目标检测是一个重要的任务,它在许多应用领域,如自动驾驶、安防监控和物体识别中起着关键作用。目前,YOLOv8系列是一种广泛应用的目标检测算法,而RepVGG是一个强大的重参数化模型结构。本文将介绍如何将YOLOv8与RepVGG相结合,利用其极简而强大的特性来提高目标检测的性能。
首先,我们将解释YOLOv8的基本原理。YOLO(You Only Look Once)是一种实时目标检测算法,它将目标检测问题转化为一个回归问题,通过将图像分成网格并在每个网格中预测边界框和类别来实现目标检测。YOLOv8是YOLO系列的最新版本,它通过引入融合检测器(Ensemble Detector)的概念,将不同尺度的特征图融合起来,提高了检测性能。
接下来,我们介绍RepVGG的重参数化模型结构。RepVGG是一种基于VGG网络的模型结构,它通过将卷积层和非线性激活函数合并为一个可训练的卷积层,从而大大减少了模型的参数量。这种重参数化的设计使得RepVGG在保持VGG网络结构的同时,拥有了更高的计算效率和更小的模型体积。
现在,我们将说明如何将YOLOv8与RepVGG相结合。首先ÿ