YOLOv5 改进WIoU损失函数:基于最新论文的WIoU损失函数与动态聚焦机制的边界框回归损失

本文提出了一种改进YOLOv5目标检测算法的方法,融合WIoU损失函数和动态聚焦机制的边界框回归损失,以及BBR损失函数,从而提高检测性能和鲁棒性。实验证明,这种方法超越了经典损失函数并在多个数据集上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv5 改进WIoU损失函数:基于最新论文的WIoU损失函数与动态聚焦机制的边界框回归损失

摘要:
目标检测是计算机视觉领域的重要任务之一。为了提高目标检测算法的性能,研究人员不断提出改进的损失函数。本文介绍了一种基于最新论文的WIoU损失函数,并结合动态聚焦机制的边界框回归损失,通过实验证明了该方法的有效性。此外,作者还提出了BBR(基于注意力的损失WIoU函数),进一步提升了目标检测算法的性能。

  1. 引言
    目标检测是计算机视觉领域中的核心任务之一。YOLOv5是一个流行的目标检测算法,但其原始版本在边界框回归和损失函数方面存在一些不足。因此,本文提出了一种改进的损失函数,通过引入WIoU损失函数和动态聚焦机制的边界框回归损失,来提升YOLOv5的性能。

  2. 相关工作
    在过去的几年中,很多研究人员提出了各种改进的目标检测算法。其中,损失函数的设计是提高性能的重要组成部分。一些经典的损失函数包括CIoU和SIoU。然而,这些方法在某些场景下存在一定的局限性。因此,本文引入了WIoU损失函数,并结合动态聚焦机制的边界框回归损失。

  3. 方法
    本文改进了YOLOv5的损失函数。首先,引入了WIoU损失函数作为边界框的评估指标,以更准确地衡量目标检测算法的性能。其次,通过动态聚焦机制,将注意力集中于难以预测的目标区域

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值