YOLOv5 改进WIoU损失函数:基于最新论文的WIoU损失函数与动态聚焦机制的边界框回归损失
摘要:
目标检测是计算机视觉领域的重要任务之一。为了提高目标检测算法的性能,研究人员不断提出改进的损失函数。本文介绍了一种基于最新论文的WIoU损失函数,并结合动态聚焦机制的边界框回归损失,通过实验证明了该方法的有效性。此外,作者还提出了BBR(基于注意力的损失WIoU函数),进一步提升了目标检测算法的性能。
-
引言
目标检测是计算机视觉领域中的核心任务之一。YOLOv5是一个流行的目标检测算法,但其原始版本在边界框回归和损失函数方面存在一些不足。因此,本文提出了一种改进的损失函数,通过引入WIoU损失函数和动态聚焦机制的边界框回归损失,来提升YOLOv5的性能。 -
相关工作
在过去的几年中,很多研究人员提出了各种改进的目标检测算法。其中,损失函数的设计是提高性能的重要组成部分。一些经典的损失函数包括CIoU和SIoU。然而,这些方法在某些场景下存在一定的局限性。因此,本文引入了WIoU损失函数,并结合动态聚焦机制的边界框回归损失。 -
方法
本文改进了YOLOv5的损失函数。首先,引入了WIoU损失函数作为边界框的评估指标,以更准确地衡量目标检测算法的性能。其次,通过动态聚焦机制,将注意力集中于难以预测的目标区域