YOLOv5改进实战 | 更换损失函数(二)之WIOU篇

本文介绍了YOLOv5版本v7.0中默认使用CIoU损失函数的改进,重点探讨了WIOU(Wise IoU)损失函数的原理和实现。通过修改`ComputeLoss`类的`__call__()`函数,可以将损失函数替换为WIOU的v1、v2或v3版本,以优化目标检测性能。
摘要由CSDN通过智能技术生成

在这里插入图片描述


前言

本文使用的YOLOv5版本为v7.0,该版本为YOLOv5最新版本,默认损失函数采用的是CIoU。若对损失函数IOU、GIOU、DIOU等并不熟悉的同学,可移步:IOU系列:IOU、GIOU、DIOU、CIOU、SIOU、Alpha-IoU、WIOU详解


🚀🚀🚀 YOLOv5改进损失函数系列:

YOLOv5改进实战(1)| 更换损失函数(一)之EIoU、Alpha-IoU、SIoU篇
YOLOv5改进实战(2)| 更换损失函数(二)之WIOU(Wise IoU)篇
YOLOv5改进实战(3)| 更换损失函数(三)之MPDIOU(2023最新IOU)篇
YOLOv5改进实战(6)| 更换损失函数(四)之NWD(小目标检测)篇


一、⭐ 添加损失函数

  1. 更换损失函数主要修改metrics.py文件中的bbox_iou函数
    • 源代码如下:
      def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
         # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
      
         # Get the coordinates of bounding boxes
         if xywh:  # transform from xywh to xyxy
             (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
             w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
             b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
             b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
         else:  # x1, y1, x2, y2 = box1
             b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
             b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
             w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
             w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
      
         # Intersection area
         inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
                 (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
      
         # Union Area
         union = w1 * h1 + w2 * h2 - inter + eps
      
         # IoU
         iou = inter / union
         if CIoU or DIoU or GIoU:
             cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
             ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
             if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
                 c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
                 rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center dist ** 2
                 if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                     v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
                     with torch.no_grad():
                         alpha = v / (v - iou + (1 + eps))
                     return iou - (rho2 / c2 + v * alpha)  # CIoU
                 return iou - rho2 / c2  # DIoU
             c_area = cw * ch + eps  # convex area
             return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
         return iou  # IoU
      
    • 替换成以下代码
      class WIoU_Scale:
          ''' monotonous: {
                  None: origin v1
                  True: monotonic FM v2
                  False: non-monotonic FM v3
              }
              momentum: The momentum of running mean'''
          
          iou_mean = 1.
          monotonous = False
          _momentum = 1 - 0.5 ** (1 / 7000)
          _is_train = True
       
          def __init__(self, iou):
              self.iou = iou
              self._update(self)
          
          @classmethod
          def _update(cls, self):
              if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
                                               cls._momentum * self.iou.detach().mean().item()
          
          @classmethod
          def _scaled_loss(cls, self, gamma=1.9, delta=3):
              if isinstance(self.monotonous, bool):
                  if self.monotonous:
                      return (self.iou.detach() / self.iou_mean).sqrt()
                  else:
                      beta = self.iou.detach() / self.iou_mean
                      alpha = delta * torch.pow(gamma, beta - delta)
                      return beta / alpha
              return 1
          
       
      def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):
          # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
       
          # Get the coordinates of bounding boxes
          if xywh:  # transform from xywh to xyxy
              (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
              w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
              b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
              b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
          else:  # x1, y1, x2, y2 = box1
              b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
              b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
              w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
              w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)
       
          # Intersection area
          inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
                  (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
       
          # Union Area
          union = w1 * h1 + w2 * h2 - inter + eps
          if scale:
              self = WIoU_Scale(1 - (inter / union))
       
          # IoU
          # iou = inter / union # ori iou
          iou = torch.pow(inter/(union + eps), alpha) # alpha iou
          if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:
              cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
              ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
              if CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
                  c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
                  rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2
                  if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                      v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                      with torch.no_grad():
                          alpha_ciou = v / (v - iou + (1 + eps))
                      if Focal:
                          return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoU
                      else:
                          return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
                  elif EIoU:
                      rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
                      rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
                      cw2 = torch.pow(cw ** 2 + eps, alpha)
                      ch2 = torch.pow(ch ** 2 + eps, alpha)
                      if Focal:
                          return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIou
                      else:
                          return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIou
                  elif SIoU:
                      # SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
                      s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps
                      s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
                      sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
                      sin_alpha_1 = torch.abs(s_cw) / sigma
                      sin_alpha_2 = torch.abs(s_ch) / sigma
                      threshold = pow(2, 0.5) / 2
                      sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
                      angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
                      rho_x = (s_cw / cw) ** 2
                      rho_y = (s_ch / ch) ** 2
                      gamma = angle_cost - 2
                      distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
                      omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
                      omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
                      shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
                      if Focal:
                          return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIou
                      else:
                          return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIou
                  elif WIoU:
                      if Focal:
                          raise RuntimeError("WIoU do not support Focal.")
                      elif scale:
                          return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051
                      else:
                          return iou, torch.exp((rho2 / c2)) # WIoU v1
                  if Focal:
                      return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoU
                  else:
                      return iou - rho2 / c2  # DIoU
              c_area = cw * ch + eps  # convex area
              if Focal:
                  return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdf
              else:
                  return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdf
          if Focal:
              return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoU
          else:
              return iou  # IoU
      

二、WIOU

🔥 WIOU 损失函数相关代码可查看wiou

  • utils/loss.py中,找到ComputeLoss类中的__call__()函数
    在这里插入图片描述
    ⭐将红框部分替换为以下代码:
    iou = bbox_iou(pbox, tbox[i], WIoU=True, scale=True)  # iou(prediction, target)
    if type(iou) is tuple:
        lbox += (iou[1].detach().squeeze() * (1 - iou[0].squeeze())).mean()
        iou = iou[0].squeeze()
    else:
        lbox += (1.0 - iou.squeeze()).mean()  # iou loss
        iou = iou.squeeze()
    
  • WIOU有三个版本,分别是v1 v2 v3,默认使用的是v3版本,可通过更改WIoU_Scale类中的monotonous参数,None表示v1版本,True表示v2版本,False表示v3版本。
    在这里插入图片描述
    在这里插入图片描述
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

w94ghz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值