T1学习笔记

设置GPU

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

# 导入mnist数据,依次分别为训练集图片、训练集标签、测试集图片、测试集标签
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

可视化图片

# 将像素的值标准化至0到1的区间内。(对于灰度图片来说,每个像素最大值是255,每个像素最小值是0,也就是直接除以255就可以完成归一化。)
train_images, test_images = train_images / 255.0, test_images / 255.0
# 查看数据维数信息
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
"""
输出:((60000, 28, 28), (10000, 28, 28), (60000,), (10000,))
"""

调整图片格式

# 将数据集前20个图片数据可视化显示
# 进行图像大小为20宽、10长的绘图(单位为英寸inch)
plt.figure(figsize=(20,10))
# 遍历MNIST数据集下标数值0~49
for i in range(20):
    # 将整个figure分成5行10列,绘制第i+1个子图。
    plt.subplot(2,10,i+1)
    # 设置不显示x轴刻度
    plt.xticks([])
    # 设置不显示y轴刻度
    plt.yticks([])
    # 设置不显示子图网格线
    plt.grid(False)
    # 图像展示,cmap为颜色图谱,"plt.cm.binary"为matplotlib.cm中的色表
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    # 设置x轴标签显示为图片对应的数字
    plt.xlabel(train_labels[i])
# 显示图片
plt.show()

在这里插入图片描述

构建CNN网络模型

#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
"""
输出:((60000, 28, 28, 1), (10000, 28, 28, 1), (60000,), (10000,))
"""
'\n输出:((60000, 28, 28, 1), (10000, 28, 28, 1), (60000,), (10000,))\n'

编译模型

# 创建并设置卷积神经网络
# 卷积层:通过卷积操作对输入图像进行降维和特征抽取
# 池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
# 全连接层:在经过几个卷积和池化层之后,神经网络中的高级推理通过全连接层来完成。
model = models.Sequential([
    # 设置二维卷积层1,设置32个3*3卷积核,activation参数将激活函数设置为ReLu函数,input_shape参数将图层的输入形状设置为(28, 28, 1)
    # ReLu函数作为激活励函数可以增强判定函数和整个神经网络的非线性特性,而本身并不会改变卷积层
    # 相比其它函数来说,ReLU函数更受青睐,这是因为它可以将神经网络的训练速度提升数倍,而并不会对模型的泛化准确度造成显著影响。
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    #池化层1,2*2采样
    layers.MaxPooling2D((2, 2)),
    # 设置二维卷积层2,设置64个3*3卷积核,activation参数将激活函数设置为ReLu函数
    layers.Conv2D(64, (3, 3), activation='relu'),
    #池化层2,2*2采样
    layers.MaxPooling2D((2, 2)),

    layers.Flatten(),                    #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'), #全连接层,特征进一步提取,64为输出空间的维数,activation参数将激活函数设置为ReLu函数
    layers.Dense(10)                     #输出层,输出预期结果,10为输出空间的维数
])
# 打印网络结构
model.summary()
C:\Users\11054\.conda\envs\py311\Lib\site-packages\keras\src\layers\convolutional\base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ conv2d (Conv2D)                      │ (None, 26, 26, 32)          │             320 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d (MaxPooling2D)         │ (None, 13, 13, 32)          │               0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_1 (Conv2D)                    │ (None, 11, 11, 64)          │          18,496 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_1 (MaxPooling2D)       │ (None, 5, 5, 64)            │               0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ flatten (Flatten)                    │ (None, 1600)                │               0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense (Dense)                        │ (None, 64)                  │         102,464 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_1 (Dense)                      │ (None, 10)                  │             650 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
 Total params: 121,930 (476.29 KB)
 Trainable params: 121,930 (476.29 KB)
 Non-trainable params: 0 (0.00 B)

训练模型

"""
这里设置优化器、损失函数以及metrics
这三者具体介绍可参考我的博客:
https://blog.csdn.net/qq_38251616/category_10258234.html
"""
# model.compile()方法用于在配置训练方法时,告知训练时用的优化器、损失函数和准确率评测标准
model.compile(
	# 设置优化器为Adam优化器
    optimizer='adam',
	# 设置损失函数为交叉熵损失函数(tf.keras.losses.SparseCategoricalCrossentropy())
    # from_logits为True时,会将y_pred转化为概率(用softmax),否则不进行转换,通常情况下用True结果更稳定
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    # 设置性能指标列表,将在模型训练时监控列表中的指标
    metrics=['accuracy'])

预测

"""
这里设置输入训练数据集(图片及标签)、验证数据集(图片及标签)以及迭代次数epochs
关于model.fit()函数的具体介绍可参考我的博客:
https://blog.csdn.net/qq_38251616/category_10258234.html
"""
history = model.fit(
    # 输入训练集图片
	train_images,
	# 输入训练集标签
	train_labels,
	# 设置10个epoch,每一个epoch都将会把所有的数据输入模型完成一次训练。
	epochs=10,
	# 设置验证集
    validation_data=(test_images, test_labels))
Epoch 1/10
[1m1875/1875[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m23s[0m 12ms/step - accuracy: 0.8617 - loss: 1.0711 - val_accuracy: 0.9764 - val_loss: 0.0731
Epoch 2/10
[1m1875/1875[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m42s[0m 12ms/step - accuracy: 0.9807 - loss: 0.0629 - val_accuracy: 0.9839 - val_loss: 0.0507
Epoch 3/10
[1m1875/1875[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m20s[0m 11ms/step - accuracy: 0.9867 - loss: 0.0417 - val_accuracy: 0.9813 - val_loss: 0.0615
Epoch 4/10
[1m1875/1875[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m23s[0m 12ms/step - accuracy: 0.9888 - loss: 0.0373 - val_accuracy: 0.9849 - val_loss: 0.0483
Epoch 5/10
[1m1875/1875[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m42s[0m 13ms/step - accuracy: 0.9910 - loss: 0.0308 - val_accuracy: 0.9868 - val_loss: 0.0512
Epoch 6/10
[1m1875/1875[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m25s[0m 14ms/step - accuracy: 0.9923 - loss: 0.0266 - val_accuracy: 0.9825 - val_loss: 0.0772
Epoch 7/10
[1m1875/1875[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m24s[0m 13ms/step - accuracy: 0.9918 - loss: 0.0257 - val_accuracy: 0.9889 - val_loss: 0.0487
Epoch 8/10
[1m1875/1875[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m26s[0m 14ms/step - accuracy: 0.9925 - loss: 0.0234 - val_accuracy: 0.9888 - val_loss: 0.0469
Epoch 9/10
[1m1875/1875[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m41s[0m 14ms/step - accuracy: 0.9953 - loss: 0.0153 - val_accuracy: 0.9883 - val_loss: 0.0561
Epoch 10/10
[1m1875/1875[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m26s[0m 14ms/step - accuracy: 0.9946 - loss: 0.0177 - val_accuracy: 0.9864 - val_loss: 0.0612
plt.imshow(test_images[1])

[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 6ms/step





array([  4.7766366 ,  17.328173  ,  35.958973  ,  -0.66707563,
        -2.9664526 , -16.614527  ,   2.3804164 ,   3.3105466 ,
       -16.611683  , -12.768283  ], dtype=float32)

在这里插入图片描述

pre = model.predict(test_images) # 对所有测试图片进行预测
pre[1] # 输出第一张图片的预测结果
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 5ms/step





array([  4.7766366 ,  17.328173  ,  35.958973  ,  -0.66707563,
        -2.9664526 , -16.614527  ,   2.3804164 ,   3.3105466 ,
       -16.611683  , -12.768283  ], dtype=float32)

网络结构说明

在这里插入图片描述

各层的作用

● 输入层:用于将数据输入到训练网络
● 卷积层:使用卷积核提取图片特征
● 池化层:进行下采样,用更高层的抽象表示图像特征
● Flatten层:将多维的输入一维化,常用在卷积层到全连接层的过渡
● 全连接层:起到“特征提取器”的作用
● 输出层:输出结果

个人总结

熟悉了各层网络的作用,掌握了TensorFlow的基本逻辑和操作。

  • 28
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值