UTM(Undergraduate Texts in Mathematics)书单 |附下载链接

UTM(Undergraduate Texts in Mathematics)书单

  1. Halmos, Paul R. (1974). Finite-Dimensional Vector Spaces. ISBN978-0-387-90093-3.
  2. Halmos, Paul Richard (1974). Lectures on Boolean algebras. ISBN978-0-387-90094-0.
  3. Halmos, Paul R. (1974). Naive Set Theory. ISBN978-0-387-90092-6.
  4. Martin, George E. (1975). The Foundations of Geometry and the Non-Euclidean Plane. ISBN978-1-4612-5727-1.
  5. Kemeny, John G.; Snell, J. Laurie (1976). Finite Markov Chains: With a New Appendix: “Generalization of a Fundamental Matrix”. ISBN978-0-387-90192-3.
  6. Singer, I. M.; Thorpe, J. A. (1976). Lecture Notes on Elementary Topology and Geometry. ISBN978-0-387-90202-9.
  7. Apostol, Tom M. (1976). Introduction to Analytic Number Theory. ISBN978-0-387-90163-3.
  8. Sigler, L. E. (1976). Algebra. ISBN978-0-387-90195-4.
  9. Fleming, Wendell (1977). Functions of Several Variables. ISBN978-0-387-90206-7.
  10. Croom, F. H. (1978). Basic Concepts of Algebraic Topology. ISBN978-0-387-90288-3.
  11. LeCuyer, Edward J. (1978). Introduction to College Mathematics with A Programming Language. ISBN978-0-387-90280-7.
  12. Duda, E.; Whyburn, G. (1979). Dynamic Topology. ISBN978-0-387-90358-3.
  13. Jantosciak, J.; Prenowitz, W. (1979). Join Geometries: A Theory of Convex Sets and Linear Geometry. ISBN978-0-387-90340-8.
  14. Malitz, Jerome (1979). Introduction to Mathematical Logic: Set Theory - Computable Functions - Model Theory. ISBN978-0-387-90346-0.
  15. Wilson, R. L. (1979). Much Ado About Calculus: A Modern Treatment with Applications Prepared for Use with the Computer. ISBN978-0-387-90347-7.
  16. Thorpe, John A. (1979). Elementary Topics in Differential Geometry. doi:10.1007/978-1-4612-6153-7. ISBN978-0-387-90357-6.
  17. Franklin, Joel (1980). Methods of Mathematical Economics: Linear and Nonlinear Programming. Fixed-Point Theorems. ISBN978-0-387-90481-8.
  18. Macki, Jack; Strauss, Aaron (1981). Introduction to Optimal Control Theory. ISBN978-0-387-90624-9.
  19. Foulds, L. R. (1981). Optimization Techniques: An Introduction. ISBN978-0-387-90586-0.
  20. Fischer, E. (1982). Intermediate Real Analysis. ISBN978-0-387-90721-5.
  21. Martin, George E. (1982). Transformation Geometry: An Introduction to Symmetry. ISBN978-0-387-90636-2.
  22. Martin, George E. (1983). The Foundations of Geometry and the Non-Euclidean Plane. ISBN978-0-387-90694-2.
  23. Owen, David R. (1983). A First Course in the Mathematical Foundations of Thermodynamics. ISBN978-0-387-90897-7.
  24. Smith, K. T. (1983). Primer of Modern Analysis: Directions for Knowing All Dark Things, Rhind Papyrus, 1800 B.C. ISBN978-0-387-90797-0.
  25. Armstrong, M. A. (1983). Basic Topology. doi:10.1007/978-1-4757-1793-8. ISBN978-0-387-90839-7.
  26. Dixmier, Jacques (1984). General Topology. ISBN0-387-90972-9.
  27. Morrey, Charles B. Jr.; Protter, Murray H. (1984). Intermediate Calculus. ISBN978-0-387-96058-6.
  28. Curtis, Charles W. (1984). Linear Algebra: An Introductory Approach. ISBN978-0-387-90992-9.
  29. Driver, R.D. (1984). Why Math?. ISBN978-0-387-90973-8.
  30. Foulds, L. R. (1984). Combinatorial Optimization for Undergraduates. ISBN978-0-387-90977-6.
  31. Jänich, Klaus (1984). Topology. ISBN978-0-387-90892-2.
  32. Bühler, W. K.; Cornell, G.; Opolka, H.; Scharlau, W. (1985). From Fermat to Minkowski: Lectures on the Theory of Numbers and Its Historical Development. ISBN978-0-387-90942-4.
  33. Marsden, Jerrold; Weinstein, Alan (1985). Calculus I. ISBN978-0-387-90974-5.
  34. Marsden, Jerrold; Weinstein, Alan (1985). Calculus II. ISBN978-0-387-90975-2.
  35. Marsden, Jerrold; Weinstein, Alan (1985). Calculus III. ISBN978-0-387-90985-1.
  36. Lang, Serge (1986). Introduction to Linear Algebra (2nd ed.). ISBN978-0-387-96205-4.
  37. Stanton, Dennis; White, Dennis (1986). Constructive Combinatorics. ISBN978-0-387-96347-1.
  38. Klambauer, Gabriel (1986). Aspects of Calculus. ISBN978-0-387-96274-0.
  39. Lang, Serge (1986). A First Course in Calculus (5th ed.). doi:10.1007/978-1-4419-8532-3. ISBN978-0-387-96201-6.
  40. James, I. M. (1987). Topological and Uniform Spaces. ISBN978-0-387-96466-9.
  41. Lang, Serge (1987). Calculus of Several Variables. ISBN978-0-387-96405-8.
  42. Lang, Serge (1987). Linear Algebra (3rd ed.). ISBN978-0-387-96412-6.
  43. Peressini, Anthony L.; Sullivan, Francis E.; Uhl, J.J. Jr. (1988). The Mathematics of Nonlinear Programming. ISBN978-0-387-96614-4.
  44. Samuel, Pierre (1988). Projective Geometry. ISBN978-0-387-96752-3.
  45. Armstrong, Mark A. (1988). Groups and Symmetry. doi:10.1007/978-1-4757-4034-9. ISBN978-0-387-96675-5.
  46. Brémaud, Pierre (1988). An Introduction to Probabilistic Modeling. doi:10.1007/978-1-4612-1046-7. ISBN978-0-387-96460-7.
  47. Bressoud, David M. (1989). Factorization and Primality Testing. doi:10.1007/978-1-4612-4544-5. ISBN978-0-387-97040-0.
  48. Brickman, Louis (1989). Mathematical Introduction to Linear Programming and Game Theory. doi:10.1007/978-1-4612-4540-7. ISBN978-0-387-96931-2.
  49. Strayer, James K. (1989). Linear Programming and Its Applications. doi:10.1007/978-1-4612-1009-2. ISBN978-0-387-96930-5.
  50. Flanigan, Francis J.; Kazdan, Jerry L. (1990). Calculus Two: Linear and Nonlinear Functions (2nd ed.). ISBN978-0-387-97388-3.
  51. Iooss, Gérard; Joseph, Daniel D. (1990). Elementary Stability and Bifurcation Theory (2nd ed.). doi:10.1007/978-1-4612-0997-3. ISBN978-0-387-97068-4.
  52. Hoffmann, Karl-Heinz; Hämmerlin, Günther (1991). Numerical Mathematics. doi:10.1007/978-1-4612-4442-4. ISBN978-0-387-97494-1.
  53. Morrey, Charles B. Jr.; Protter, Murray H. (1991). A First Course in Real Analysis (2nd ed.). doi:10.1007/978-1-4419-8744-0. ISBN978-0-387-97437-8.
  54. Bressoud, David M. (1991). Second Year Calculus: From Celestial Mechanics to Special Relativity. doi:10.1007/978-1-4612-0959-1. ISBN978-0-387-97606-8.
  55. Millman, Richard S.; Parker, George D. (1991). Geometry: A Metric Approach with Models (2nd ed.). ISBN978-0-387-97412-5.
  56. Palka, Bruce P. (1991). An Introduction to Complex Function Theory. ISBN978-0-387-97427-9.
  57. Banchoff, Thomas; Wermer, John (1992). Linear Algebra Through Geometry (2nd ed.). doi:10.1007/978-1-4612-4390-8. ISBN978-0-387-97586-3.
  58. Devlin, Keith (1993). The Joy of Sets: Fundamentals of Contemporary Set Theory (2nd ed.). doi:10.1007/978-1-4612-0903-4. ISBN978-0-387-94094-6.
  59. Kinsey, L. Christine (1993). Topology of Surfaces. doi:10.1007/978-1-4612-0899-0. ISBN978-0-387-94102-8.
  60. Valenza, Robert J. (1993). Linear Algebra: An Introduction to Abstract Mathematics. doi:10.1007/978-1-4612-0901-0. ISBN978-0-387-94099-1.
  61. Ebbinghaus, H. -D.; Flum, J.; Thomas, W. (1994). Mathematical Logic (2nd ed.). doi:10.1007/978-1-4757-2355-7. ISBN978-0-387-94258-2.
  62. Berberian, Sterling K. (1994). A First Course in Real Analysis. doi:10.1007/978-1-4419-8548-4. ISBN978-0-387-94217-9.
  63. Jänich, Klaus (1994). Linear Algebra. doi:10.1007/978-1-4612-4298-7. ISBN978-0-387-94128-8.
  64. Pedrick, George (1994). A First Course in Analysis. doi:10.1007/978-1-4419-8554-5. ISBN978-0-387-94108-0.
  65. Stillwell, John (1994). Elements of Algebra: Geometry, Numbers, Equations. doi:10.1007/978-1-4757-3976-3. ISBN978-0-387-94290-2.
  66. Anglin, W.S. (1994). Mathematics: A Concise History and Philosophy. doi:10.1007/978-1-4612-0875-4. ISBN978-0-387-94280-3.
  67. Simmonds, James G. (1994). A Brief on Tensor Analysis (2nd ed.). doi:10.1007/978-1-4419-8522-4. ISBN978-0-387-94088-5.
  68. Anglin, W.S.; Lambek, J. (1995). The Heritage of Thales. ISBN978-0-387-94544-6.
    Isaac, Richard (1995). The Pleasures of Probability. ISBN978-0-387-94415-9.
  69. Exner, George R. (1996). An Accompaniment to Higher Mathematics. doi:10.1007/978-1-4612-3998-7. ISBN978-0-387-94617-7.
  70. Troutman, John L. (1996). Variational Calculus and Optimal Control: Optimization with Elementary Convexity (2nd ed.). doi:10.1007/978-1-4612-0737-5. ISBN978-0-387-94511-8.
  71. Browder, Andrew (1996). Mathematical Analysis: An Introduction. doi:10.1007/978-1-4612-0715-3. ISBN978-0-387-94614-6.
    Buskes, Gerard; Rooij, Arnoud Van (1997). Topological Spaces: From Distance to Neighborhood. doi:10.1007/978-1-4612-0665-1. ISBN978-0-387-94994-9.
  72. Fine, Benjamin; Rosenberger, Gerhard (1997). The Fundamental Theorem of Algebra. doi:10.1007/978-1-4612-1928-6. ISBN978-0-387-94657-3.
  73. Beardon, Alan F. (1997). Limits: A New Approach to Real Analysis. doi:10.1007/978-1-4612-0697-2. ISBN978-0-387-98274-8.
  74. Gordon, Hugh (1997). Discrete Probability. doi:10.1007/978-1-4612-1966-8. ISBN978-0-387-98227-4.
  75. Roman, Steven (1997). Introduction to Coding and Information Theory. ISBN978-0-387-94704-4.
  76. Sethuraman, Bharath (1997). Rings, Fields, and Vector Spaces: An Introduction to Abstract Algebra via Geometric Constructibility. doi:10.1007/978-1-4757-2700-5. ISBN978-0-387-94848-5.
  77. Lang, Serge (1997). Undergraduate Analysis (2nd ed.). doi:10.1007/978-1-4757-2698-5. ISBN978-0-387-94841-6.
  78. Hilton, Peter; Holton, Derek; Pedersen, Jean (1997). Mathematical Reflections: In a Room with Many Mirrors. doi:10.1007/978-1-4612-1932-3. ISBN978-0-387-94770-9.
  79. Martin, George E. (1998). Geometric Constructions. doi:10.1007/978-1-4612-0629-3. ISBN978-0-387-98276-2.
  80. Protter, Murray H. (1998). Basic Elements of Real Analysis. doi:10.1007/b98884. ISBN978-0-387-98479-7.
  81. Priestley, W. M. (1998). Calculus: A Liberal Art (2nd ed.). doi:10.1007/978-1-4612-1658-2. ISBN978-0-387-98379-0.
  82. Singer, David A. (1998). Geometry: Plane and Fancy. doi:10.1007/978-1-4612-0607-1. ISBN978-0-387-98306-6.
  83. Smith, Larry (1998). Linear Algebra (3rd ed.). doi:10.1007/978-1-4612-1670-4. ISBN978-0-387-98455-1.
  84. Lidl, Rudolf; Pilz, Günter (1998). Applied Abstract Algebra (2nd ed.). doi:10.1007/978-1-4757-2941-2. ISBN978-0-387-98290-8.
  85. Stillwell, John (1998). Numbers and Geometry. doi:10.1007/978-1-4612-0687-3. ISBN978-0-387-98289-2.
  86. Laubenbacher, Reinhard; Pengelley, David (1999). Mathematical Expeditions: Chronicles by the Explorers. ISBN978-0-387-98434-6.
  87. Frazier, Michael W. (1999). An Introduction to Wavelets Through Linear Algebra. ISBN978-0-387-98639-5.
  88. Schiff, Joel L. (1999). The Laplace Transform: Theory and Applications. ISBN978-0-387-98698-2.
  89. Brunt, B. van; Carter, M. (2000). The Lebesgue-Stieltjes Integral: A Practical Introduction. doi:10.1007/978-1-4612-1174-7. ISBN978-0-387-95012-9.
  90. Exner, George R. (2000). Inside Calculus. doi:10.1007/b97700. ISBN978-0-387-98932-7.
  91. Hartshorne, Robin (2000). Geometry: Euclid and Beyond. doi:10.1007/978-0-387-22676-7. ISBN978-0-387-98650-0.
  92. Callahan, James J. (2000). The Geometry of Spacetime: An Introduction to Special and General Relativity. doi:10.1007/978-1-4757-6736-0. ISBN978-0-387-98641-8.
  93. Cederberg, Judith N. (2001). A Course in Modern Geometries (2nd ed.). doi:10.1007/978-1-4757-3490-4. ISBN978-0-387-98972-3.
  94. Gamelin, Theodore W. (2001). Complex Analysis. doi:10.1007/978-0-387-21607-2. ISBN978-0-387-95093-8.
  95. Jänich, Klaus (2001). Vector Analysis. doi:10.1007/978-1-4757-3478-2. ISBN978-0-387-98649-4.
  96. Martin, George E. (2001). Counting: The Art of Enumerative Combinatorics. doi:10.1007/978-1-4757-4878-9. ISBN978-0-387-95225-3.
  97. Hilton, Peter; Holton, Derek; Pedersen, Jean (2002). Mathematical Vistas: From a Room with Many Windows. doi:10.1007/978-1-4757-3681-6. ISBN978-0-387-95064-8.
  98. Saxe, Karen (2002). Beginning Functional Analysis. doi:10.1007/978-1-4757-3687-8. ISBN978-0-387-95224-6.
  99. Lang, Serge (2002). Short Calculus: The Original Edition of “A First Course in Calculus”. doi:10.1007/978-1-4613-0077-9. ISBN978-0-387-95327-4.
  100. Estep, Donald (2002). Practical Analysis in One Variable. doi:10.1007/b97698. ISBN978-0-387-95484-4.
  101. Toth, Gabor (2002). Glimpses of Algebra and Geometry (2nd ed.). doi:10.1007/b98964. ISBN978-0-387-95345-8.
  102. Aitsahlia, Farid; Chung, Kai Lai (2003). Elementary Probability Theory: With Stochastic Processes and an Introduction to Mathematical Finance (4th ed.). doi:10.1007/978-0-387-21548-8. ISBN978-0-387-95578-0.
  103. Erdös, Paul; Suranyi, Janos (2003). Topics in the Theory of Numbers. doi:10.1007/978-1-4613-0015-1. ISBN978-0-387-95320-5.
  104. Lovász, L.; Pelikán, J.; Vesztergombi, K. (2003). Discrete Mathematics: Elementary and Beyond. doi:10.1007/b97469. ISBN978-0-387-95584-1.
  105. Stillwell, John (2003). Elements of Number Theory. doi:10.1007/978-0-387-21735-2. ISBN978-0-387-95587-2.
  106. Buchmann, Johannes (2004). Introduction to Cryptography (2nd ed.). doi:10.1007/978-1-4419-9003-7. ISBN978-0-387-21156-5.
  107. Irving, Ronald S. (2004). Integers, Polynomials, and Rings: A Course in Algebra. doi:10.1007/b97633. ISBN978-0-387-40397-7.
  108. Ross, Clay C. (2004). Differential Equations: An Introduction with Mathematica (2nd ed.). doi:10.1007/978-1-4757-3949-7. ISBN978-0-387-21284-5.
  109. Cull, Paul; Flahive, Mary; Robson, Robby (2005). Difference Equations: From Rabbits to Chaos. doi:10.1007/0-387-27645-9. ISBN978-0-387-23233-1.
  110. Chambert-Loir, Antoine (2005). A Field Guide to Algebra. doi:10.1007/b138364. ISBN978-0-387-21428-3.
  111. Elaydi, Saber (2005). An Introduction to Difference Equations (3rd ed.). doi:10.1007/0-387-27602-5. ISBN978-0-387-23059-7.
  112. Lang, Serge (2005). Undergraduate Algebra (3rd ed.). doi:10.1007/0-387-27475-8. ISBN978-0-387-22025-3.
  113. Singer, Stephanie Frank (2005). Linearity, Symmetry, and Prediction in the Hydrogen Atom. doi:10.1007/b136359. ISBN978-0-387-24637-6.
  114. Stillwell, John (2005). The Four Pillars of Geometry. doi:10.1007/0-387-29052-4. ISBN978-0-387-25530-9.
  115. Bix, Robert (2006). Conics and Cubics: A Concrete Introduction to Algebraic Curves (2nd ed.). doi:10.1007/0-387-39273-4. ISBN978-0-387-31802-8.
  116. Moschovakis, Yiannis (2006). Notes on Set Theory (2nd ed.). doi:10.1007/0-387-31609-4. ISBN978-0387287225.
  117. Knoebel, Art; Laubenbacher, Reinhard; Lodder, Jerry; Pengelley, David (2007). Mathematical Masterpieces: Further Chronicles by the Explorers. doi:10.1007/978-0-387-33062-4. ISBN978-0-387-33060-0.
  118. Harris, John M.; Hirst, Jeffry L.; Mossinghoff, Michael (2008). Combinatorics and Graph Theory (2nd ed.). doi:10.1007/978-0-387-79711-3. ISBN978-0-387-79710-6.
  119. Stillwell, John (2008). Naive Lie Theory. doi:10.1007/978-0-387-78214-0. ISBN978-0-387-78214-0.
  120. Hairer, Ernst; Wanner, Gerhard (2008) [1996]. Analysis by its History. doi:10.1007/978-0-387-77036-9. ISBN978-0-387-94551-4.
  121. Edgar, Gerald (2008). Edgar, Gerald (ed.). Measure, Topology, and Fractal Geometry (2nd ed.). doi:10.1007/978-0-387-74749-1. ISBN978-0-387-74748-4.
  122. Herod, James; Shonkwiler, Ronald W. (2009). Mathematical Biology: An Introduction with Maple and Matlab (2nd ed.). doi:10.1007/978-0-387-70984-0. ISBN978-0-387-70983-3.
  123. Mendivil, Frank; Shonkwiler, Ronald W. (2009). Explorations in Monte Carlo Methods. doi:10.1007/978-0-387-87837-9. ISBN978-0-387-87836-2.
  124. Stein, William (2009). Elementary Number Theory: Primes, Congruences, and Secrets: A Computational Approach. doi:10.1007/b13279. ISBN978-0-387-85524-0.
  125. Childs, Lindsay N. (2009). Childs, Lindsay N (ed.). A Concrete Introduction to Higher Algebra (3rd ed.). doi:10.1007/978-0-387-74725-5. ISBN978-0-387-74527-5.
  126. Halmos, Paul R.; Givant, Steven (2009). Introduction to Boolean Algebras. doi:10.1007/978-0-387-68436-9. ISBN978-0-387-40293-2.
  127. Bak, Joseph; Newman, Donald J. (2010). Complex Analysis (3rd ed.). doi:10.1007/978-1-4419-7288-0. ISBN978-1-4419-7287-3.
  128. Beck, Matthias; Geoghegan, Ross (2010). The Art of Proof: Basic Training for Deeper Mathematics. doi:10.1007/978-1-4419-7023-7. ISBN978-1-4419-7022-0.
  129. Callahan, James J. (2010). Advanced Calculus: A Geometric View. ISBN978-1-4419-7331-3.
  130. Hurlbert, Glenn (2010). Linear Optimization: The Simplex Workbook. ISBN978-0-387-79147-0.
  131. Stillwell, John (2010). Mathematics and Its History (3rd ed.). doi:10.1007/978-1-4419-6053-5. ISBN978-1-441-96052-8.
  132. Ghorpade, Sudhir R.; Limaye, Balmohan V. (2010). A Course in Multivariable Calculus and Analysis. doi:10.1007/978-1-4419-1621-1. ISBN978-1-4419-1620-4.
  133. Davidson, Kenneth R.; Donsig, Allan P. (2010). Real Analysis and Applications: Theory in Practice. doi:10.1007/978-0-387-98098-0. ISBN978-0-387-98097-3.
  134. Daepp, Ulrich; Gorkin, Pamela (2011). Reading, Writing, and Proving: A Closer Look at Mathematics (2nd ed.). doi:10.1007/978-1-4419-9479-0. ISBN978-1-4419-9478-3.
  135. Bloch, Ethan D. (2011). Proofs and Fundamentals: A First Course in Abstract Mathematics (2nd ed.). doi:10.1007/978-1-4419-7127-2. ISBN978-1-4419-7126-5.
  136. Adkins, William A.; Davidson, Mark G. (2012). Ordinary Differential Equations. ISBN978-1-461-43617-1.
  137. Ostermann, Alexander; Wanner, Gerhard (2012). Geometry by Its History. ISBN978-3-642-29163-0.
  138. Petersen, Peter (2012). Linear Algebra. ISBN978-1-4614-3612-6.
  139. Roman, Steven (2012). Introduction to the Mathematics of Finance: Arbitrage and Option Pricing. ISBN978-1-4614-3582-2.
  140. Gerstein, Larry J. (2012). Introduction to Mathematical Structures and Proofs (2nd ed.). doi:10.1007/978-1-4614-4265-3. ISBN978-1-4614-4264-6.
  141. Vanderbei, Robert J.; Çinlar, Erhan (2013). Real and Convex Analysis. ISBN978-1-4614-5256-0.
  142. Bajnok, Bela (2013). An Invitation to Abstract Mathematics. ISBN978-1-461-46635-2.
  143. McInerney, Andrew (2013). First Steps in Differential Geometry. ISBN978-1-4614-7731-0.
  144. Ross, Kenneth A. (2013). Elementary Analysis: The Theory of Calculus. ISBN978-1-4614-6270-5.
  145. Stillwell, John (2013). The Real Numbers: An Introduction to Set Theory and Analysis. doi:10.1007/978-3-319-01577-4. ISBN978-3-319-01576-7.
  146. Conway, John B. (2014). A Course in Point Set Topology. ISBN978-3-319-02367-0.
  147. Olver, Peter J. (2014). Introduction to Partial Differential Equations. ISBN978-3-319-02098-3.
  148. Mercer, Peter R. (2014). More Calculus of a Single Variable. doi:10.1007/978-1-4939-1926-0. ISBN978-1-4939-1925-3.
  149. Hoffstein, Jeffrey; Pipher, Jill; Silverman, Joseph H. (2014). An Introduction to Mathematical Cryptography (2nd ed.). doi:10.1007/978-1-4939-1711-2. ISBN978-1-4939-1710-5.
  150. Terrell, Maria Shea; Lax, Peter D. (2014). Calculus with Applications (2nd ed.). doi:10.1007/978-1-4614-7946-8. ISBN978-1-4614-7945-1.
  151. Axler, Sheldon (2015). Linear Algebra Done Right (3rd ed.). doi:10.1007/978-3-319-11080-6. ISBN978-3-319-11079-0.
  152. Beck, Matthias; Robins, Sinai (2015). Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra (2nd ed.). doi:10.1007/978-1-4939-2969-6. ISBN978-1-4939-2968-9.
  153. Laczkovich, Miklós; Sós, Vera T. (2015). Real Analysis: Foundations and Functions of One Variable. doi:10.1007/978-1-4939-2766-1. ISBN978-1-4939-2765-4.
  154. Pugh, Charles C. (2015). Real Mathematical Analysis (2nd ed.). doi:10.1007/978-3-319-17771-7. ISBN978-3-319-17770-0.
  155. Logan, David J. (2015). A First Course in Differential Equations (3rd ed.). doi:10.1007/978-3-319-17852-3. ISBN978-3-319-17851-6.
  156. Silverman, Joseph H.; Tate, John (2015). Rational Points on Elliptic Curves (2nd ed.). doi:10.1007/978-3-319-18588-0. ISBN978-3-319-18587-3.
  157. Little, Charles; Kee, Teo; van Brunt, Bruce (2015). Real Analysis via Sequences and Series. doi:10.1007/978-1-4939-2651-0. ISBN978-1-4939-2650-3.
  158. Abbott, Stephen (2015). Understanding Analysis (2nd ed.). doi:10.1007/978-1-4939-2712-8. ISBN978-1-4939-2711-1.
  159. Cox, David; Little, John; O’Shea, Danal (2015). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra (4th ed.). doi:10.1007/978-3-319-16721-3. ISBN978-3-319-16720-6.
  160. Logan, David J. (2015). Applied Partial Differential Equations (3rd ed.). doi:10.1007/978-3-319-12493-3. ISBN978-3-319-12492-6.
  161. Tapp, Kristopher (2016). Differential Geometry of Curves and Surfaces. doi:10.1007/978-3-319-39799-3. ISBN978-3-319-39798-6.
  162. Hijab, Omar (2016). Introduction to Calculus and Classical Analysis (4th ed.). doi:10.1007/978-3-319-28400-2. ISBN978-3-319-28399-9.
  163. Shurman, Jerry (2016). Calculus and Analysis in Euclidean Space. doi:10.1007/978-3-319-49314-5. ISBN978-3-319-49312-1.
  164. Laczkovich, Miklós; Sós, Vera T. (2017). Real Analysis: Series, Functions of SeveralVariables, and Applications. doi:10.1007/978-1-4939-7369-9. ISBN978-1-4939-7367-5.
  165. Lax, Peter D.; Terrell, Maria Shea (2017). Multivariable Calculus with Applications. doi:10.1007/978-3-319-74073-7. ISBN978-3-319-74072-0.
  166. Shores, Thomas S. (2018). Applied Linear Algebra and Matrix Analysis (2nd ed.). doi:10.1007/978-3-319-74748-4. ISBN978-3-319-74747-7.
  167. Olver, Peter J.; Shakiban, Chehrzad (2018). Applied Linear Algebra (2nd ed.). doi:10.1007/978-3-319-91041-3. ISBN978-3-319-91040-6.
  168. Stanley, Richard P. (2018). Algebraic Combinatorics: Walks, Trees, Tableaux, and More (2nd ed.). doi:10.1007/978-3-319-77173-1. ISBN978-3-319-77172-4.
  169. Ghorpade, Sudhir R.; Limaye, Balmohan V. (2018). A Course in Calculus and Real Analysis (2nd ed.). doi:10.1007/978-3-030-01400-1. ISBN978-3-030-01399-8.
  170. Asmar, Nakhle H.; Grafakos, Loukas (2018). Complex Analysis with Applications. doi:10.1007/978-3-319-94063-2. ISBN978-3-319-94062-5.
  171. Rosenthal, Daniel; Rosenthal, David; Rosenthal, Peter (2018). A Readable Introduction to Real Mathematics (2nd ed.). doi:10.1007/978-3-030-00632-7. ISBN978-3-030-00631-0.
  172. Takloo-Bighash, Ramin (2018). A Pythagorean Introduction to Number Theory. doi:10.1007/978-3-030-02604-2. ISBN978-3-030-02603-5.
  173. Petersen, T. Kyle (2019). Inquiry-Based Enumerative Combinatorics: One, Two, Skip a Few… Ninety-Nine, One Hundred. doi:10.1007/978-3-030-18308-0. ISBN978-3-030-18307-3.
  174. Saari, Donald G. (2019). Mathematics of Finance: An Intuitive Introduction. doi:10.1007/978-3-030-25443-8. ISBN978-3-030-25442-1.
  175. Jongsma, Calvin (2019). Introduction to Discrete Mathematics via Logic and Proof. doi:10.1007/978-3-030-25358-5. ISBN978-3-030-25357-8.
  176. Lee, Nam-Hoon (2020). Geometry: from Isometries to Special Relativity. doi:10.1007/978-3-030-42101-4. ISBN978-3-030-42100-7.
  177. Bajnok, Bela (2020). An Invitation to Abstract Mathematics (2nd ed.). doi:10.1007/978-3-030-56174-1. ISBN978-3-030-56173-4.
  178. Stillwell, John (2020). Mathematics and Its History. doi:10.1007/978-3-030-55193-3. ISBN978-3-030-55192-6.

关注vx公 众号 “我不是wc”,回复 “017” 获取百度网盘下载链接

CHAPTER I The Integers 1 §1. Terminology of Sets 1 §2. Basic Properties 2 §3. Greatest Common Divisor 5 §4. Unique Factorization 7 §5. Equivalence Relations and Congruences 12 CHAPTER II Groups 16 §1. Groups and Examples 16 §2. Mappings 26 §3. Homomorphisms 33 §4. Cosets and Normal Subgroups 41 §5. Application to Cyclic Groups 55 §6. Permutation Groups 59 §7. Finite Abelian Groups 67 §8. Operation of a Group on a Set 73 §9. Sylow Subgroups 79 CHAPTER III Rings 83 §1. Rings 83 §2. Ideals 87 §3. Homomorphisms 90 §4. Quotient Fields 100 X CONTENTS CHAPTER IV Polynomials 105 §1. Polynomials and Polynomial Functions 105 §2. Greatest Common Divisor 118 §3. Unique Factorization 120 §4. Partial Fractions 129 §5. Polynomials Over Rings and Over the Integers 136 §6. Principal Rings and Factorial Rings 143 §7. Polynomials in Several Variables 152 §8. Symmetric Polynomials 159 §9. The Mason-Stothers Theorem 165 §10. The abc Conjecture 171 CHAPTER V Vector Spaces and Modules 177 §1. Vector Spaces and Bases 177 §2. Dimension of a Vector Space 185 §3. Matrices and Linear Maps 188 §4. Modules 192 §5. Factor Modules 203 §6. Free Abelian Groups 205 §7. Modules over Principal Rings 210 §8. Eigenvectors and Eigenvalues 214 §9. Polynomials of Matrices and Linear Maps 220 CHAPTER VI Some Linear Groups 232 §1. The General Linear Group 232 §2. Structure of Gh^(F) 236 §3. SL,(F) 239 §4. SL,(R) and SL,(C) Iwasawa Decompositions 245 §5. Other Decompositions 252 §6. The Conjugation Action 254 CHAPTER VII Field Theory 258 §1. Algebraic Extensions 258 §2. Embeddings 267 §3. Splitting Fields 275 §4. Galois Theory 280 §5. Quadratic and Cubic Extensions 292 §6. Solvability by Radicals 296 §7. Infinite Extensions 302 CHAPTER VIM Finite Fields 309 §1. General Structure 309 §2. The Frobenius Automorphism 313 CONTENTS XI §3. The Primitive Elements 315 §4. Splitting Field and Algebraic Closure 316 §5. Irreducibility of the Cyclotomic Polynomials Over Q 317 §6. Where Does It All Go? Or Rather, Where Does Some of It Go? ... . 321 CHAPTER IX The Real and Complex Numbers 326 §1. Ordering of Rings 326 §2. Preliminaries 330 §3. Construction of the Real Numbers 333 §4. Decimal Expansions 343 §5. The Complex Numbers 346 CHAPTER X Sets 351 §1. More Terminology 351 §2. Zorn's Lemma 354 §3. Cardinal Numbers 359 §4. Well-ordering 369 Appendix §1. The Natural Numbers 373 §2. The Integers 378 §3. Infinite Sets 379 Index 381
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值