相似矩阵对角化 | 找到一个可逆矩阵 P 使得 P^(-1)AP 成为一个对角矩阵

本文介绍了矩阵对角化的条件及其与线性无关特征向量的关系,并通过一个具体的3阶矩阵示例,详细计算了特征值、特征向量,以及如何构造可逆矩阵实现对角化。最后,给出了对角化后的矩阵指数运算的表达式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

理论上的证明我这里就暂时不写了(懒),直接上结论和例题,理论证明等以后在补充吧。(果断挖坑)

定理:

对于 n n n 阶矩阵 A A A ,存在一个可逆矩阵 P P P,使得 P − 1 A P P^{-1}AP P1AP 是一个对角矩阵的充要条件是, A A A n n n 个线性无关的特征向量。

A A A 的特征向量为 ε 1 , ε 2 , ⋯   , ε n \varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n ε1,ε2,,εn 对应的特征值为 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn。取 P = [ ε 1 , ε 2 , ⋯   , ε n ] P=[\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n] P=[ε1,ε2,,εn] P − 1 A P P^{-1}AP P1AP 是一个对角矩阵,对角线上的元素为 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn

光说定理也太乏味了,来个例题加深一下理解吧

例题

A = [ 0 1 2 1 2 1 2 1 0 ] A=\begin{bmatrix} 0&1&\sqrt{2}\\ 1&\sqrt{2}&1\\ \sqrt{2}&1&0\end{bmatrix} A=012 12 12 10

  1. A A A 的特征值和特征向量
  2. 找到一个可逆矩阵 P P P,使得 P − 1 A P P^{-1}AP P1AP 是一个对角矩阵
  3. A n A^n An 的表达式

参考答案

∣ λ E − A ∣ = λ ( λ + 2 ) ( λ − 2 2 ) = 0 |\lambda E-A| = \lambda(\lambda+\sqrt{2})(\lambda-2\sqrt{2})=0 λEA=λ(λ+2 )(λ22 )=0

得到 A A A 的特征值为

λ 1 = − 2 , λ 2 = 2 2 , λ 3 = 0 \lambda_1=-\sqrt{2},\lambda_2=2\sqrt{2},\lambda_3=0 λ1=2 ,λ2=22 ,λ3=0

对于特征值 λ 1 = − 2 \lambda_1=-\sqrt{2} λ1=2 ,有特征向量 ε 1 = ( 1 , 0 , − 1 ) T \varepsilon_1=(1,0,-1)^{T} ε1=(1,0,1)T
对于特征值 λ 2 = 2 2 \lambda_2=2\sqrt{2} λ2=22 ,有特征向量 ε 2 = ( 1 , 2 , 1 ) T \varepsilon_2=(1,\sqrt{2},1)^{T} ε2=(1,2 ,1)T
对于特征值 λ 3 = 0 \lambda_3=0 λ3=0,有特征向量 ε 3 = ( 1 , − 2 , 1 ) T \varepsilon_3=(1,-\sqrt{2},1)^{T} ε3=(1,2 ,1)T

  • 令:

    P = [ ε 1 , ε 2 , ε 3 ] = [ 1 1 1 0 2 − 2 − 1 1 1 ] P =[\varepsilon_1,\varepsilon_2,\varepsilon_3]= \begin{bmatrix} 1 & 1 &1\\ 0 & \sqrt{2} &-\sqrt{2}\\ -1 & 1 & 1 \end{bmatrix} P=[ε1,ε2,ε3]=10112 112 1

    根据前文提到的定理

    P − 1 A P = [ − 2 0 0 0 2 2 0 0 0 0 ] P^{-1}AP = \begin{bmatrix} -\sqrt{2}&0&0\\ 0&2\sqrt{2}&0\\ 0&0&0 \end{bmatrix} P1AP=2 00022 0000

    A n = P [ − 2 0 0 0 2 2 0 0 0 0 ] n P − 1 = [ 1 1 1 0 2 − 2 − 1 1 1 ] [ − 2 0 0 0 2 2 0 0 0 0 ] n [ 1 1 1 0 2 − 2 − 1 1 1 ] − 1 = 1 4 [ 1 1 1 0 2 − 2 − 1 1 1 ] [ ( − 2 ) n 0 0 0 ( 2 2 ) n 0 0 0 0 ] [ 2 0 − 2 1 2 1 1 − 2 1 ] = 2 n 4 [ 2 ( − 1 ) n + 2 n 2 ⋅ 2 n ( − 1 ) n + 1 2 + 2 n 2 n 2 2 n + 1 2 n 2 ( − 1 ) n + 1 2 + 2 n 2 ⋅ 2 n ( − 1 ) n 2 + 2 n ] \begin{aligned}A^n &= P\begin{bmatrix} -\sqrt{2}&0&0\\ 0&2\sqrt{2}&0\\ 0&0&0 \end{bmatrix}^nP^{-1}\\ &=\begin{bmatrix} 1&1&1\\ 0&\sqrt{2}&-\sqrt{2}\\ -1&1&1 \end{bmatrix} \begin{bmatrix} -\sqrt{2}&0&0\\ 0&2\sqrt{2}&0\\ 0&0&0 \end{bmatrix}^{n} \begin{bmatrix} 1&1&1\\ 0&\sqrt{2}&-\sqrt{2}\\ -1&1&1 \end{bmatrix}^{-1}\\ &=\frac{1}{4} \begin{bmatrix} 1&1&1\\ 0&\sqrt{2}&-\sqrt{2}\\ -1&1&1 \end{bmatrix} \begin{bmatrix} (-\sqrt{2})^n&0&0\\ 0&(2\sqrt{2})^n&0\\ 0&0&0 \end{bmatrix} \begin{bmatrix} 2&0&-2\\ 1&\sqrt{2}&1\\ 1&-\sqrt{2}&1 \end{bmatrix}\\ & = \frac{\sqrt{2}^n}{4} \begin{bmatrix} 2(-1)^n+2^n&\sqrt{2}\cdot2^n&(-1)^{n+1}2+2^n\\ 2^n\sqrt{2}&2^{n+1}&2^n\sqrt{2}\\ (-1)^{n+1}2+2^n&\sqrt{2}\cdot 2^n&(-1)^n2+2^n \end{bmatrix} \end{aligned} An=P2 00022 0000nP1=10112 112 12 00022 0000n10112 112 11=4110112 112 1(2 )n000(22 )n000021102 2 211=42 n2(1)n+2n2n2 (1)n+12+2n2 2n2n+12 2n(1)n+12+2n2n2 (1)n2+2n


2021年11月25日21:40:16

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值