相似矩阵对角化 | 找到一个可逆矩阵 P 使得 P^(-1)AP 成为一个对角矩阵

理论上的证明我这里就暂时不写了(懒),直接上结论和例题,理论证明等以后在补充吧。(果断挖坑)

定理:

对于 n n n 阶矩阵 A A A ,存在一个可逆矩阵 P P P,使得 P − 1 A P P^{-1}AP P1AP 是一个对角矩阵的充要条件是, A A A n n n 个线性无关的特征向量。

A A A 的特征向量为 ε 1 , ε 2 , ⋯   , ε n \varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n ε1,ε2,,εn 对应的特征值为 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn。取 P = [ ε 1 , ε 2 , ⋯   , ε n ] P=[\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n] P=[ε1,ε2,,εn] P − 1 A P P^{-1}AP P1AP 是一个对角矩阵,对角线上的元素为 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn

光说定理也太乏味了,来个例题加深一下理解吧

例题

A = [ 0 1 2 1 2 1 2 1 0 ] A=\begin{bmatrix} 0&1&\sqrt{2}\\ 1&\sqrt{2}&1\\ \sqrt{2}&1&0\end{bmatrix} A=012 12 12 10

  1. A A A 的特征值和特征向量
  2. 找到一个可逆矩阵 P P P,使得 P − 1 A P P^{-1}AP P1AP 是一个对角矩阵
  3. A n A^n An 的表达式

参考答案

∣ λ E − A ∣ = λ ( λ + 2 ) ( λ − 2 2 ) = 0 |\lambda E-A| = \lambda(\lambda+\sqrt{2})(\lambda-2\sqrt{2})=0 λEA=λ(λ+2 )(λ22 )=0

得到 A A A 的特征值为

λ 1 = − 2 , λ 2 = 2 2 , λ 3 = 0 \lambda_1=-\sqrt{2},\lambda_2=2\sqrt{2},\lambda_3=0 λ1=2 ,λ2=22 ,λ3=0

对于特征值 λ 1 = − 2 \lambda_1=-\sqrt{2} λ1=2 ,有特征向量 ε 1 = ( 1 , 0 , − 1 ) T \varepsilon_1=(1,0,-1)^{T} ε1=(1,0,1)T
对于特征值 λ 2 = 2 2 \lambda_2=2\sqrt{2} λ2=22 ,有特征向量 ε 2 = ( 1 , 2 , 1 ) T \varepsilon_2=(1,\sqrt{2},1)^{T} ε2=(1,2 ,1)T
对于特征值 λ 3 = 0 \lambda_3=0 λ3=0,有特征向量 ε 3 = ( 1 , − 2 , 1 ) T \varepsilon_3=(1,-\sqrt{2},1)^{T} ε3=(1,2 ,1)T

  • 令:

    P = [ ε 1 , ε 2 , ε 3 ] = [ 1 1 1 0 2 − 2 − 1 1 1 ] P =[\varepsilon_1,\varepsilon_2,\varepsilon_3]= \begin{bmatrix} 1 & 1 &1\\ 0 & \sqrt{2} &-\sqrt{2}\\ -1 & 1 & 1 \end{bmatrix} P=[ε1,ε2,ε3]=10112 112 1

    根据前文提到的定理

    P − 1 A P = [ − 2 0 0 0 2 2 0 0 0 0 ] P^{-1}AP = \begin{bmatrix} -\sqrt{2}&0&0\\ 0&2\sqrt{2}&0\\ 0&0&0 \end{bmatrix} P1AP=2 00022 0000

    A n = P [ − 2 0 0 0 2 2 0 0 0 0 ] n P − 1 = [ 1 1 1 0 2 − 2 − 1 1 1 ] [ − 2 0 0 0 2 2 0 0 0 0 ] n [ 1 1 1 0 2 − 2 − 1 1 1 ] − 1 = 1 4 [ 1 1 1 0 2 − 2 − 1 1 1 ] [ ( − 2 ) n 0 0 0 ( 2 2 ) n 0 0 0 0 ] [ 2 0 − 2 1 2 1 1 − 2 1 ] = 2 n 4 [ 2 ( − 1 ) n + 2 n 2 ⋅ 2 n ( − 1 ) n + 1 2 + 2 n 2 n 2 2 n + 1 2 n 2 ( − 1 ) n + 1 2 + 2 n 2 ⋅ 2 n ( − 1 ) n 2 + 2 n ] \begin{aligned}A^n &= P\begin{bmatrix} -\sqrt{2}&0&0\\ 0&2\sqrt{2}&0\\ 0&0&0 \end{bmatrix}^nP^{-1}\\ &=\begin{bmatrix} 1&1&1\\ 0&\sqrt{2}&-\sqrt{2}\\ -1&1&1 \end{bmatrix} \begin{bmatrix} -\sqrt{2}&0&0\\ 0&2\sqrt{2}&0\\ 0&0&0 \end{bmatrix}^{n} \begin{bmatrix} 1&1&1\\ 0&\sqrt{2}&-\sqrt{2}\\ -1&1&1 \end{bmatrix}^{-1}\\ &=\frac{1}{4} \begin{bmatrix} 1&1&1\\ 0&\sqrt{2}&-\sqrt{2}\\ -1&1&1 \end{bmatrix} \begin{bmatrix} (-\sqrt{2})^n&0&0\\ 0&(2\sqrt{2})^n&0\\ 0&0&0 \end{bmatrix} \begin{bmatrix} 2&0&-2\\ 1&\sqrt{2}&1\\ 1&-\sqrt{2}&1 \end{bmatrix}\\ & = \frac{\sqrt{2}^n}{4} \begin{bmatrix} 2(-1)^n+2^n&\sqrt{2}\cdot2^n&(-1)^{n+1}2+2^n\\ 2^n\sqrt{2}&2^{n+1}&2^n\sqrt{2}\\ (-1)^{n+1}2+2^n&\sqrt{2}\cdot 2^n&(-1)^n2+2^n \end{bmatrix} \end{aligned} An=P2 00022 0000nP1=10112 112 12 00022 0000n10112 112 11=4110112 112 1(2 )n000(22 )n000021102 2 211=42 n2(1)n+2n2n2 (1)n+12+2n2 2n2n+12 2n(1)n+12+2n2n2 (1)n2+2n


2021年11月25日21:40:16

  • 8
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 证明: 正向证明: 假设复方阵A是正规矩阵,则存在一个幺正矩阵U,使得 A = UDU*, 其中D是对角矩阵,并且U*U = UU* = I。 我们可以将D写成 D = P-1BP, 其中B是对角矩阵,P是一个逆矩阵,因为D是对角矩阵。 将D代入A的式子中,得到 A = UP-1BPUP-1B*P-1U*。 令P-1U = Q,则Q*Q = I,因为U是幺正矩阵,所以Q也是幺正矩阵。 将Q代入上式中,得到 A = QBPB*Q*。 因此,存在一个逆矩阵P,使得P-1AP和P-1A*P都是对角矩阵。 逆向证明: 假设存在一个逆矩阵P,使得P-1AP和P-1A*P都是对角矩阵。 设P-1AP = D和P-1A*P = E,其中D和E都是对角矩阵。 因为P是可逆矩阵,所以P*P-1 = I,因此有 A = PDP-1 = P*DP-1*, A* = PE*P-1 = P*EP-1*。 因此, AA* = PDP-1PE*P-1* = PDEP-1*P-1 = PDP-1EP-1*P-1* = A*A。 因此,A是正规矩阵。 综上所述,复方阵A是正规矩阵当且仅当存在可逆矩阵P使P逆AP和P逆A*P都是对角矩阵。 ### 回答2: 首先,设复方阵A是正规矩阵。 正规矩阵定义为满足A*A* = A*A的矩阵。这意味着A*A* = A*A = AA*。 根据正规矩阵的定义,存在一个酉矩阵U(即U*U = I),使得U*A = AU*。考虑到酉矩阵的性质,U*A* = (U*A)* = (AU*)* = A*U,即U可以用来对A进行转置操作。 因此,我们可以构造P = A*U,其中U为满足U*A = AU*的酉矩阵。那么A = PU*和A* = U*P*。 我们将这两个等式代入到之前的P = A*U中,得到P = U*P*U。由于U为酉矩阵,它的逆等于其共轭转置,即U* = U^H。 将U*替换回等式,我们有P = U*P*U = U^HPU。 至此,我们证明了存在一个逆矩阵P,使得P^-1AP和P^-1A*P都是对角矩阵。 反过来,设存在一个逆矩阵P,使得P^-1AP和P^-1A*P都是对角矩阵。 对于P^-1AP,我们有(A^-1)^-1P^T = P^-1AP。因此,P^T = (A^-1)^-1P^-1AP。 对于P^-1A*P,我们有(AP^-1)^T = (P^-1A*P)^T。由于(A*P)^T = P^TA^T,我们可以得到P^TA^T = (P^-1A*P)^T。 因此,P^TA^T = (P^-1A*P)^T = (AP^-1)^T = (P^-1)^TA. 结合上述两个等式,我们有P^TA^T = P^TA。 由于P是可逆矩阵,我们可以对两边左乘P^-1,得到A^T = A。 因此,我们证明了复方阵A是正规矩阵。 综上所述,复方阵A是正规矩阵当且仅当存在一个逆矩阵P,使得P^-1AP和P^-1A*P都是对角矩阵。 ### 回答3: 要证明复方阵A是正规矩阵当且仅当存在可逆矩阵P使得P^-1AP和P^-1A*P都是对角矩阵。 证明:假设A是正规矩阵。 首先证明必要性,即证明如果A是正规矩阵,则存在可逆矩阵P使得P^-1AP和P^-1A*P都是对角矩阵。 由于A是正规矩阵,根据正规矩阵的性质,A可以被施密特正交化的方法对角化,即存在正交矩阵Q和对角矩阵D,使得A=QDQ^-1。 由于Q是正交矩阵,所以Q^-1=Q^T(转置矩阵)。 令P=Q,那么P^-1=Q^-1=Q^T。 将P^-1AP和P^-1A*P代入,得到P^-1AP=Q^TAQ=Q^TQD=Q^-1QD=D是对角矩阵;P^-1A*P=Q^TAQ*Q=Q^TA=Q^TQD=Q^-1QD=D也是对角矩阵。 由此,证明了必要性。 然后证明充分性,即证明如果存在可逆矩阵P使得P^-1AP和P^-1A*P都是对角矩阵,则A是正规矩阵。 假设P^-1AP和P^-1A*P都是对角矩阵。 由于P^-1AP对角矩阵,那么A=PPP^-1A=PD(P^-1A)。 由于P^-1A*P是对角矩阵,那么A*(P*P^-1)=A*P*P^-1=(AP)*P^-1=(PD)*P^-1=P*DP^-1=P*DP^-1。 将A和A*代入式子中,得到A*(P*P^-1)=(AP)*P^-1。 两边同时左乘P,得到P*A*(P*P^-1)=P*(AP)*P^-1。 由于P是可逆矩阵,所以P*P^-1=I(单位矩阵)。 因此,P*A*P=P*(AP)*P^-1=APP^-1=A。 由此,证明了充分性。 综上所述,复方阵A是正规矩阵当且仅当存在可逆矩阵P使得P^-1AP和P^-1A*P都是对角矩阵

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值