一些比较有趣的单元函数极限题(一)

写在前面

题目非原创(b站,微信公众号,还有平常自己遇到的一些习题…),仅做整理。侵权删。持续更新ing.
写在前面

第一题

lim ⁡ x → 0 + sin ⁡ x x − x x 1 − e x x \begin{aligned} \lim_{x\to 0+}\frac{\sin^xx-x^x}{1-e^{x^x}} \end{aligned} x0+lim1exxsinxxxx

这到极限题你来试试???【好题精选】【米哥专升本】

第二题

lim ⁡ n → + ∞ n ( n + 1 ) ( n + 2 ) ⋯ ( 2 n − 1 ) n n \lim\limits_{n\to+\infty}\frac{\sqrt[n]{n(n+1)(n+2)\cdots(2n-1)}}{n} n+limnnn(n+1)(n+2)(2n1)
2021年华东师范研究生入学数学分析考试

第三题

lim ⁡ x → 0 + ∫ 0 x 2 t 3 2   d t ∫ 0 x t ( t − sin ⁡ t )   d t \lim_{x\to 0^+}\frac{\int_0^{x^2}t^{\frac{3}{2}}\,\mathrm{d}t}{\int_0^xt(t-\sin t)\,\mathrm{d}t} x0+lim0xt(tsint)dt0x2t23dt

第四题

lim ⁡ x → + ∞ e x ( 1 + 1 x ) x 2 \lim_{x\to +\infty}\frac{e^x}{(1+\frac{1}{x})^{x^2}} x+lim(1+x1)x2ex

第五题

lim ⁡ x → 0 ( e sin ⁡ x + sin ⁡ x ) 1 sin ⁡ x − ( e tan ⁡ x + tan ⁡ x ) 1 tan ⁡ x x 3 \lim _{x \rightarrow 0} \frac{\left(e^{\sin x}+\sin x\right)^{\frac{1}{\sin x}}-\left(e^{\tan x}+\tan x\right)^{\frac{1}{\tan x}}}{x^{3}} x0limx3(esinx+sinx)sinx1(etanx+tanx)tanx1

答案

第一题

lim ⁡ x → 0 + sin ⁡ x x − x x 1 − e x 3 = lim ⁡ x → 0 + e x ln ⁡ sin ⁡ x − e x ln ⁡ x − x 3 = lim ⁡ x → 0 + e x ln ⁡ x ( e x ln ⁡ sin ⁡ x − x ln ⁡ x − 1 ) − x 3 = lim ⁡ x → 0 + e x ln ⁡ x ⋅ lim ⁡ x → 0 + e x ln ⁡ sin ⁡ x − x ln ⁡ x − 1 − x 3 = 1 ⋅ lim ⁡ x → 0 + x ln ⁡ sin ⁡ x − x ln ⁡ x − x 3 = lim ⁡ x → 0 + ln ⁡ sin ⁡ x − ln ⁡ x − x 2 = lim ⁡ x → 0 + ln ⁡ x sin ⁡ x x 2 = lim ⁡ x → 0 + x sin ⁡ x − 1 x 2 = lim ⁡ x → 0 + x − sin ⁡ x x 3 = lim ⁡ x → 0 + 1 − cos ⁡ x 3 x 2 = 1 6 \begin{aligned} \lim_{x\to 0+}\frac{\sin^xx-x^x}{1-e^{x^3}} &=\lim_{x\to 0+}\frac{e^{x\ln\sin x}-e^{x\ln x}}{-x^3}\\ &=\lim_{x\to 0+}\frac{e^{x\ln x}(e^{x\ln\sin x-x\ln x}-1)}{-x^3}\\ &=\lim_{x\to 0+}e^{x\ln x}\cdot \lim_{x\to 0+}\frac{e^{x\ln\sin x-x\ln x}-1}{-x^3}\\ &=1\cdot\lim_{x\to 0+}\frac{x\ln\sin x-x\ln x}{-x^3}\\ &=\lim_{x\to 0+}\frac{\ln\sin x-\ln x}{-x^2}\\ &=\lim_{x\to 0+}\frac{\ln\frac{x}{\sin x}}{x^2}\\ &=\lim_{x\to 0+}\frac{\frac{x}{\sin x}-1}{x^2}\\ &=\lim_{x\to 0+}\frac{x-\sin x}{x^3}\\ &=\lim_{x\to 0+}\frac{1-\cos x}{3x^2}\\ &=\frac{1}{6} \end{aligned} x0+lim1ex3sinxxxx=x0+limx3exlnsinxexlnx=x0+limx3exlnx(exlnsinxxlnx1)=x0+limexlnxx0+limx3exlnsinxxlnx1=1x0+limx3xlnsinxxlnx=x0+limx2lnsinxlnx=x0+limx2lnsinxx=x0+limx2sinxx1=x0+limx3xsinx=x0+lim3x21cosx=61

第二题

lim ⁡ n → + ∞ n ( n + 1 ) ( n + 2 ) ⋯ ( 2 n − 1 ) n n = n ( n + 1 ) ( n + 2 ) ⋯ ( 2 n − 1 ) n n n = ( 1 + 1 n ) ⋅ ( 1 + 2 n ) ⋯ ( 1 + n − 1 n ) n = e ln ⁡ ( 1 + 1 n ) + ln ⁡ ( 1 + 2 n ) + ⋯ + ln ⁡ ( 1 + n − 1 n ) n = e ∫ 1 2 ln ⁡ ( x )   d x = e ln ⁡ 4 − 1 = 4 e \begin{aligned} \lim\limits_{n\to+\infty}\frac{\sqrt[n]{n(n+1)(n+2)\cdots(2n-1)}}{n}&=\sqrt[n]{\frac{n(n+1)(n+2)\cdots(2n-1)}{n^n}}\\ &=\sqrt[n]{(1+\frac{1}{n})\cdot(1+\frac{2}{n})\cdots(1+\frac{n-1}{n})}\\ &=e^{\frac{\ln(1+\frac{1}{n})+\ln(1+\frac{2}{n})+\cdots+\ln(1+\frac{n-1}{n})}{n}}\\ &=e^{\int_1^2\ln(x)\,\mathrm{d}x}\\ &=e^{\ln4-1}\\ &=\frac{4}{e} \end{aligned} n+limnnn(n+1)(n+2)(2n1) =nnnn(n+1)(n+2)(2n1) =n(1+n1)(1+n2)(1+nn1) =enln(1+n1)+ln(1+n2)++ln(1+nn1)=e12ln(x)dx=eln41=e4

第三题

lim ⁡ x → 0 + ∫ 0 x 2 t 3 2   d t ∫ 0 x t ( t − sin ⁡ t )   d t = lim ⁡ x → 0 + x 2 ⋅ 3 2 ⋅ 2 ⋅ x x ( x − sin ⁡ x ) = lim ⁡ x → 0 + 2 x 3 x − sin ⁡ x = lim ⁡ x → 0 + 6 x 2 1 − cos ⁡ x = lim ⁡ x → 0 + 12 x sin ⁡ x = 12 \begin{aligned} \lim_{x\to 0^+}\frac{\int_0^{x^2}t^{\frac{3}{2}}\,\mathrm{d}t}{\int_0^xt(t-\sin t)\,\mathrm{d}t}&=\lim_{x\to 0^{+}}\frac{x^{2\cdot\frac{3}{2}}\cdot2\cdot x}{x(x-\sin x)}\\ &=\lim_{x\to 0^{+}}\frac{2x^3}{x-\sin x}\\ &=\lim_{x\to 0^{+}}\frac{6x^2}{1-\cos x}\\ &=\lim_{x\to 0^{+}}\frac{12x}{\sin x}\\ &=12 \end{aligned} x0+lim0xt(tsint)dt0x2t23dt=x0+limx(xsinx)x2232x=x0+limxsinx2x3=x0+lim1cosx6x2=x0+limsinx12x=12

第四题

lim ⁡ x → + ∞ e x ( 1 + 1 x ) x 2 = exp ⁡ (   lim ⁡ x → + ∞ ln ⁡ e x ( 1 + 1 x ) x 2 ) = exp ⁡ ( lim ⁡ x → + ∞ ( x − x 2 ln ⁡ ( 1 + 1 x ) ) \begin{aligned} \lim_{x\to +\infty}\frac{e^x}{(1+\frac{1}{x})^{x^2}}&=\exp(\ \lim_{x\to+\infty} \ln\frac{e^x}{(1+\frac{1}{x})^{x^2}})\\ &=\exp(\lim_{x\to+\infty}(x-x^2\ln(1+\frac{1}{x})) \end{aligned} x+lim(1+x1)x2ex=exp( x+limln(1+x1)x2ex)=exp(x+lim(xx2ln(1+x1))

令 :

t = 1 x t=\frac{1}{x} t=x1

那么:

lim ⁡ x → + ∞ ( x − x 2 ln ⁡ ( 1 + 1 x ) = lim ⁡ t → 0 + t − ln ⁡ ( 1 + t ) t 2 = lim ⁡ x → 0 + 1 − 1 1 + t 2 t = lim ⁡ x → 0 + t ( 1 + t ) ( 2 t ) = lim ⁡ x → 0 + 1 2 ( 1 + t ) = 1 2 \begin{aligned} \lim_{x\to+\infty}(x-x^2\ln(1+\frac{1}{x})&=\lim_{t\to 0^+}\frac{t-\ln(1+t)}{t^2}\\ &=\lim_{x\to 0^+}\frac{1-\frac{1}{1+t}}{2t}\\ &=\lim_{x\to 0^+}\frac{t}{(1+t)(2t)}\\ &=\lim_{x\to 0^+}\frac{1}{2(1+t)}\\ &=\frac{1}{2} \end{aligned} x+lim(xx2ln(1+x1)=t0+limt2tln(1+t)=x0+lim2t11+t1=x0+lim(1+t)(2t)t=x0+lim2(1+t)1=21

所以

exp ⁡ ( lim ⁡ x → + ∞ ( x − x 2 ln ⁡ ( 1 + 1 x ) ) = exp ⁡ ( 1 / 2 ) = e \exp(\lim_{x\to+\infty}(x-x^2\ln(1+\frac{1}{x}))=\exp(1/2)=\sqrt{e} exp(x+lim(xx2ln(1+x1))=exp(1/2)=e

第五题:

设函数

f ( x ) = ( e x + x ) 1 x f(x)=(e^x+x)^{\frac{1}{ x}} f(x)=(ex+x)x1

取对数

ln ⁡ f ( x ) = ln ⁡ ( e x + x ) x \ln f(x)=\frac{\ln(e^x+x)}{x} lnf(x)=xln(ex+x)

求导

f ′ ( x ) f ( x ) = e x + 1 e x + x ⋅ x − ln ⁡ ( e x + x ) x 2 \frac{f'(x)}{f(x)}=\frac{\frac{e^x+1}{e^x+x}\cdot x-\ln(e^x+x)}{x^2} f(x)f(x)=x2ex+xex+1xln(ex+x)

于是

f ′ ( x ) = e x + 1 e x + x ⋅ x − ln ⁡ ( e x + x ) x 2 ⋅ ( e x + x ) 1 x f'(x)=\frac{\frac{e^x+1}{e^x+x}\cdot x-\ln(e^x+x)}{x^2}\cdot(e^x+x)^{\frac{1}{x}} f(x)=x2ex+xex+1xln(ex+x)(ex+x)x1

下面来分别求出

lim ⁡ x → 0 e x + 1 e x + x ⋅ x − ln ⁡ ( e x + x ) x 2 和 lim ⁡ x → 0 ( e x + x ) 1 x \lim_{x\to 0}\frac{\frac{e^x+1}{e^x+x}\cdot x-\ln(e^x+x)}{x^2}\quad\text{和}\quad\lim_{x\to 0}(e^x+x)^{\frac{1}{x}} x0limx2ex+xex+1xln(ex+x)x0lim(ex+x)x1

lim ⁡ x → 0 e x + 1 e x + x ⋅ x − ln ⁡ ( e x + x ) x 2 = lim ⁡ x → 0 e x ( e x + x ) − ( e x + 1 ) ( e x + 1 ) ( e x + x ) 2 ⋅ x 2 x = lim ⁡ x → 0 e x ( e x + x ) − ( e x + 1 ) 2 2 ( e x + x ) 2 = − 3 2 \begin{aligned} \lim_{x\to 0}\frac{\frac{e^x+1}{e^x+x}\cdot x-\ln(e^x+x)}{x^2}&=\lim_{x\to 0}\frac{\frac{e^x(e^x+x)-(e^x+1)(e^x+1)}{(e^x+x)^2}\cdot x}{2x}\\ &=\lim_{x\to 0}\frac{e^x(e^x+x)-(e^x+1)^2}{2(e^x+x)^2}\\ &=-\frac{3}{2} \end{aligned} x0limx2ex+xex+1xln(ex+x)=x0lim2x(ex+x)2ex(ex+x)(ex+1)(ex+1)x=x0lim2(ex+x)2ex(ex+x)(ex+1)2=23

lim ⁡ x → 0 ( e x + x ) 1 x = e lim ⁡ x → 0 ln ⁡ ( e x + x ) x = e lim ⁡ x → 0 e x + x − 1 x = e lim ⁡ x → 0 e x + 1 = e 2 \begin{aligned} \lim_{x\to 0}(e^x+x)^{\frac{1}{x}}&=e^{\lim\limits_{x\to 0}\frac{\ln(e^x+x)}{x}}\\ &=e^{\lim\limits_{x\to 0}\frac{e^x+x-1}{x}}\\ &=e^{\lim\limits_{x\to 0}e^x +1}\\ &=e^2 \end{aligned} x0lim(ex+x)x1=ex0limxln(ex+x)=ex0limxex+x1=ex0limex+1=e2

所以
lim ⁡ x → 0 f ′ ( x ) = − 3 2 e 2 \lim_{x\to 0}f'(x)=-\frac{3}{2}e^2 x0limf(x)=23e2

根据拉格拉日中值定理
lim ⁡ x → 0 ( e sin ⁡ x + sin ⁡ x ) 1 sin ⁡ x − ( e tan ⁡ x + tan ⁡ x ) 1 tan ⁡ x x 3 = lim ⁡ x → 0 f ( sin ⁡ x ) − f ( tan ⁡ x ) x 3 = lim ⁡ x → 0 f ′ ( ξ ) ( sin ⁡ x − tan ⁡ x ) x 3 ξ ∈ ( sin ⁡ x , tan ⁡ x ) = lim ⁡ x → 0 f ′ ( ξ ) lim ⁡ x → 0 sin ⁡ x − tan ⁡ x x 3 = − 3 2 e 2 ⋅ − 1 2 = 3 4 e 2 \begin{aligned} \lim _{x \rightarrow 0} \frac{\left(e^{\sin x}+\sin x\right)^{\frac{1}{\sin x}}-\left(e^{\tan x}+\tan x\right)^{\frac{1}{\tan x}}}{x^{3}}&=\lim_{x\to 0}\frac{f(\sin x)-f(\tan x)}{x^3}\\ &=\lim_{x\to 0}\frac{f'(\xi)(\sin x-\tan x)}{x^3}\qquad \xi\in(\sin x,\tan x)\\ &=\lim_{x\to 0}f'(\xi)\lim_{x\to 0}\frac{\sin x-\tan x}{x^3}\\ &=-\frac{3}{2}e^2\cdot-\frac{1}{2}\\ &=\frac{3}{4}e^2 \end{aligned} x0limx3(esinx+sinx)sinx1(etanx+tanx)tanx1=x0limx3f(sinx)f(tanx)=x0limx3f(ξ)(sinxtanx)ξ(sinx,tanx)=x0limf(ξ)x0limx3sinxtanx=23e221=43e2


2022年1月13日23:31:08

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值