写在前面
题目非原创(b站,微信公众号,还有平常自己遇到的一些习题…),仅做整理。侵权删。持续更新ing.
写在前面
第一题
lim x → 0 + sin x x − x x 1 − e x x \begin{aligned} \lim_{x\to 0+}\frac{\sin^xx-x^x}{1-e^{x^x}} \end{aligned} x→0+lim1−exxsinxx−xx
第二题
lim
n
→
+
∞
n
(
n
+
1
)
(
n
+
2
)
⋯
(
2
n
−
1
)
n
n
\lim\limits_{n\to+\infty}\frac{\sqrt[n]{n(n+1)(n+2)\cdots(2n-1)}}{n}
n→+∞limnnn(n+1)(n+2)⋯(2n−1)
2021年华东师范研究生入学数学分析考试
第三题
lim x → 0 + ∫ 0 x 2 t 3 2 d t ∫ 0 x t ( t − sin t ) d t \lim_{x\to 0^+}\frac{\int_0^{x^2}t^{\frac{3}{2}}\,\mathrm{d}t}{\int_0^xt(t-\sin t)\,\mathrm{d}t} x→0+lim∫0xt(t−sint)dt∫0x2t23dt
第四题
lim x → + ∞ e x ( 1 + 1 x ) x 2 \lim_{x\to +\infty}\frac{e^x}{(1+\frac{1}{x})^{x^2}} x→+∞lim(1+x1)x2ex
第五题
lim x → 0 ( e sin x + sin x ) 1 sin x − ( e tan x + tan x ) 1 tan x x 3 \lim _{x \rightarrow 0} \frac{\left(e^{\sin x}+\sin x\right)^{\frac{1}{\sin x}}-\left(e^{\tan x}+\tan x\right)^{\frac{1}{\tan x}}}{x^{3}} x→0limx3(esinx+sinx)sinx1−(etanx+tanx)tanx1
答案
第一题
lim x → 0 + sin x x − x x 1 − e x 3 = lim x → 0 + e x ln sin x − e x ln x − x 3 = lim x → 0 + e x ln x ( e x ln sin x − x ln x − 1 ) − x 3 = lim x → 0 + e x ln x ⋅ lim x → 0 + e x ln sin x − x ln x − 1 − x 3 = 1 ⋅ lim x → 0 + x ln sin x − x ln x − x 3 = lim x → 0 + ln sin x − ln x − x 2 = lim x → 0 + ln x sin x x 2 = lim x → 0 + x sin x − 1 x 2 = lim x → 0 + x − sin x x 3 = lim x → 0 + 1 − cos x 3 x 2 = 1 6 \begin{aligned} \lim_{x\to 0+}\frac{\sin^xx-x^x}{1-e^{x^3}} &=\lim_{x\to 0+}\frac{e^{x\ln\sin x}-e^{x\ln x}}{-x^3}\\ &=\lim_{x\to 0+}\frac{e^{x\ln x}(e^{x\ln\sin x-x\ln x}-1)}{-x^3}\\ &=\lim_{x\to 0+}e^{x\ln x}\cdot \lim_{x\to 0+}\frac{e^{x\ln\sin x-x\ln x}-1}{-x^3}\\ &=1\cdot\lim_{x\to 0+}\frac{x\ln\sin x-x\ln x}{-x^3}\\ &=\lim_{x\to 0+}\frac{\ln\sin x-\ln x}{-x^2}\\ &=\lim_{x\to 0+}\frac{\ln\frac{x}{\sin x}}{x^2}\\ &=\lim_{x\to 0+}\frac{\frac{x}{\sin x}-1}{x^2}\\ &=\lim_{x\to 0+}\frac{x-\sin x}{x^3}\\ &=\lim_{x\to 0+}\frac{1-\cos x}{3x^2}\\ &=\frac{1}{6} \end{aligned} x→0+lim1−ex3sinxx−xx=x→0+lim−x3exlnsinx−exlnx=x→0+lim−x3exlnx(exlnsinx−xlnx−1)=x→0+limexlnx⋅x→0+lim−x3exlnsinx−xlnx−1=1⋅x→0+lim−x3xlnsinx−xlnx=x→0+lim−x2lnsinx−lnx=x→0+limx2lnsinxx=x→0+limx2sinxx−1=x→0+limx3x−sinx=x→0+lim3x21−cosx=61
第二题
lim n → + ∞ n ( n + 1 ) ( n + 2 ) ⋯ ( 2 n − 1 ) n n = n ( n + 1 ) ( n + 2 ) ⋯ ( 2 n − 1 ) n n n = ( 1 + 1 n ) ⋅ ( 1 + 2 n ) ⋯ ( 1 + n − 1 n ) n = e ln ( 1 + 1 n ) + ln ( 1 + 2 n ) + ⋯ + ln ( 1 + n − 1 n ) n = e ∫ 1 2 ln ( x ) d x = e ln 4 − 1 = 4 e \begin{aligned} \lim\limits_{n\to+\infty}\frac{\sqrt[n]{n(n+1)(n+2)\cdots(2n-1)}}{n}&=\sqrt[n]{\frac{n(n+1)(n+2)\cdots(2n-1)}{n^n}}\\ &=\sqrt[n]{(1+\frac{1}{n})\cdot(1+\frac{2}{n})\cdots(1+\frac{n-1}{n})}\\ &=e^{\frac{\ln(1+\frac{1}{n})+\ln(1+\frac{2}{n})+\cdots+\ln(1+\frac{n-1}{n})}{n}}\\ &=e^{\int_1^2\ln(x)\,\mathrm{d}x}\\ &=e^{\ln4-1}\\ &=\frac{4}{e} \end{aligned} n→+∞limnnn(n+1)(n+2)⋯(2n−1)=nnnn(n+1)(n+2)⋯(2n−1)=n(1+n1)⋅(1+n2)⋯(1+nn−1)=enln(1+n1)+ln(1+n2)+⋯+ln(1+nn−1)=e∫12ln(x)dx=eln4−1=e4
第三题
lim x → 0 + ∫ 0 x 2 t 3 2 d t ∫ 0 x t ( t − sin t ) d t = lim x → 0 + x 2 ⋅ 3 2 ⋅ 2 ⋅ x x ( x − sin x ) = lim x → 0 + 2 x 3 x − sin x = lim x → 0 + 6 x 2 1 − cos x = lim x → 0 + 12 x sin x = 12 \begin{aligned} \lim_{x\to 0^+}\frac{\int_0^{x^2}t^{\frac{3}{2}}\,\mathrm{d}t}{\int_0^xt(t-\sin t)\,\mathrm{d}t}&=\lim_{x\to 0^{+}}\frac{x^{2\cdot\frac{3}{2}}\cdot2\cdot x}{x(x-\sin x)}\\ &=\lim_{x\to 0^{+}}\frac{2x^3}{x-\sin x}\\ &=\lim_{x\to 0^{+}}\frac{6x^2}{1-\cos x}\\ &=\lim_{x\to 0^{+}}\frac{12x}{\sin x}\\ &=12 \end{aligned} x→0+lim∫0xt(t−sint)dt∫0x2t23dt=x→0+limx(x−sinx)x2⋅23⋅2⋅x=x→0+limx−sinx2x3=x→0+lim1−cosx6x2=x→0+limsinx12x=12
第四题
lim x → + ∞ e x ( 1 + 1 x ) x 2 = exp ( lim x → + ∞ ln e x ( 1 + 1 x ) x 2 ) = exp ( lim x → + ∞ ( x − x 2 ln ( 1 + 1 x ) ) \begin{aligned} \lim_{x\to +\infty}\frac{e^x}{(1+\frac{1}{x})^{x^2}}&=\exp(\ \lim_{x\to+\infty} \ln\frac{e^x}{(1+\frac{1}{x})^{x^2}})\\ &=\exp(\lim_{x\to+\infty}(x-x^2\ln(1+\frac{1}{x})) \end{aligned} x→+∞lim(1+x1)x2ex=exp( x→+∞limln(1+x1)x2ex)=exp(x→+∞lim(x−x2ln(1+x1))
令 :
t = 1 x t=\frac{1}{x} t=x1
那么:
lim x → + ∞ ( x − x 2 ln ( 1 + 1 x ) = lim t → 0 + t − ln ( 1 + t ) t 2 = lim x → 0 + 1 − 1 1 + t 2 t = lim x → 0 + t ( 1 + t ) ( 2 t ) = lim x → 0 + 1 2 ( 1 + t ) = 1 2 \begin{aligned} \lim_{x\to+\infty}(x-x^2\ln(1+\frac{1}{x})&=\lim_{t\to 0^+}\frac{t-\ln(1+t)}{t^2}\\ &=\lim_{x\to 0^+}\frac{1-\frac{1}{1+t}}{2t}\\ &=\lim_{x\to 0^+}\frac{t}{(1+t)(2t)}\\ &=\lim_{x\to 0^+}\frac{1}{2(1+t)}\\ &=\frac{1}{2} \end{aligned} x→+∞lim(x−x2ln(1+x1)=t→0+limt2t−ln(1+t)=x→0+lim2t1−1+t1=x→0+lim(1+t)(2t)t=x→0+lim2(1+t)1=21
所以
exp ( lim x → + ∞ ( x − x 2 ln ( 1 + 1 x ) ) = exp ( 1 / 2 ) = e \exp(\lim_{x\to+\infty}(x-x^2\ln(1+\frac{1}{x}))=\exp(1/2)=\sqrt{e} exp(x→+∞lim(x−x2ln(1+x1))=exp(1/2)=e
第五题:
设函数
f ( x ) = ( e x + x ) 1 x f(x)=(e^x+x)^{\frac{1}{ x}} f(x)=(ex+x)x1
取对数
ln f ( x ) = ln ( e x + x ) x \ln f(x)=\frac{\ln(e^x+x)}{x} lnf(x)=xln(ex+x)
求导
f ′ ( x ) f ( x ) = e x + 1 e x + x ⋅ x − ln ( e x + x ) x 2 \frac{f'(x)}{f(x)}=\frac{\frac{e^x+1}{e^x+x}\cdot x-\ln(e^x+x)}{x^2} f(x)f′(x)=x2ex+xex+1⋅x−ln(ex+x)
于是
f ′ ( x ) = e x + 1 e x + x ⋅ x − ln ( e x + x ) x 2 ⋅ ( e x + x ) 1 x f'(x)=\frac{\frac{e^x+1}{e^x+x}\cdot x-\ln(e^x+x)}{x^2}\cdot(e^x+x)^{\frac{1}{x}} f′(x)=x2ex+xex+1⋅x−ln(ex+x)⋅(ex+x)x1
下面来分别求出
lim x → 0 e x + 1 e x + x ⋅ x − ln ( e x + x ) x 2 和 lim x → 0 ( e x + x ) 1 x \lim_{x\to 0}\frac{\frac{e^x+1}{e^x+x}\cdot x-\ln(e^x+x)}{x^2}\quad\text{和}\quad\lim_{x\to 0}(e^x+x)^{\frac{1}{x}} x→0limx2ex+xex+1⋅x−ln(ex+x)和x→0lim(ex+x)x1
lim x → 0 e x + 1 e x + x ⋅ x − ln ( e x + x ) x 2 = lim x → 0 e x ( e x + x ) − ( e x + 1 ) ( e x + 1 ) ( e x + x ) 2 ⋅ x 2 x = lim x → 0 e x ( e x + x ) − ( e x + 1 ) 2 2 ( e x + x ) 2 = − 3 2 \begin{aligned} \lim_{x\to 0}\frac{\frac{e^x+1}{e^x+x}\cdot x-\ln(e^x+x)}{x^2}&=\lim_{x\to 0}\frac{\frac{e^x(e^x+x)-(e^x+1)(e^x+1)}{(e^x+x)^2}\cdot x}{2x}\\ &=\lim_{x\to 0}\frac{e^x(e^x+x)-(e^x+1)^2}{2(e^x+x)^2}\\ &=-\frac{3}{2} \end{aligned} x→0limx2ex+xex+1⋅x−ln(ex+x)=x→0lim2x(ex+x)2ex(ex+x)−(ex+1)(ex+1)⋅x=x→0lim2(ex+x)2ex(ex+x)−(ex+1)2=−23
lim x → 0 ( e x + x ) 1 x = e lim x → 0 ln ( e x + x ) x = e lim x → 0 e x + x − 1 x = e lim x → 0 e x + 1 = e 2 \begin{aligned} \lim_{x\to 0}(e^x+x)^{\frac{1}{x}}&=e^{\lim\limits_{x\to 0}\frac{\ln(e^x+x)}{x}}\\ &=e^{\lim\limits_{x\to 0}\frac{e^x+x-1}{x}}\\ &=e^{\lim\limits_{x\to 0}e^x +1}\\ &=e^2 \end{aligned} x→0lim(ex+x)x1=ex→0limxln(ex+x)=ex→0limxex+x−1=ex→0limex+1=e2
所以
lim
x
→
0
f
′
(
x
)
=
−
3
2
e
2
\lim_{x\to 0}f'(x)=-\frac{3}{2}e^2
x→0limf′(x)=−23e2
根据拉格拉日中值定理
lim
x
→
0
(
e
sin
x
+
sin
x
)
1
sin
x
−
(
e
tan
x
+
tan
x
)
1
tan
x
x
3
=
lim
x
→
0
f
(
sin
x
)
−
f
(
tan
x
)
x
3
=
lim
x
→
0
f
′
(
ξ
)
(
sin
x
−
tan
x
)
x
3
ξ
∈
(
sin
x
,
tan
x
)
=
lim
x
→
0
f
′
(
ξ
)
lim
x
→
0
sin
x
−
tan
x
x
3
=
−
3
2
e
2
⋅
−
1
2
=
3
4
e
2
\begin{aligned} \lim _{x \rightarrow 0} \frac{\left(e^{\sin x}+\sin x\right)^{\frac{1}{\sin x}}-\left(e^{\tan x}+\tan x\right)^{\frac{1}{\tan x}}}{x^{3}}&=\lim_{x\to 0}\frac{f(\sin x)-f(\tan x)}{x^3}\\ &=\lim_{x\to 0}\frac{f'(\xi)(\sin x-\tan x)}{x^3}\qquad \xi\in(\sin x,\tan x)\\ &=\lim_{x\to 0}f'(\xi)\lim_{x\to 0}\frac{\sin x-\tan x}{x^3}\\ &=-\frac{3}{2}e^2\cdot-\frac{1}{2}\\ &=\frac{3}{4}e^2 \end{aligned}
x→0limx3(esinx+sinx)sinx1−(etanx+tanx)tanx1=x→0limx3f(sinx)−f(tanx)=x→0limx3f′(ξ)(sinx−tanx)ξ∈(sinx,tanx)=x→0limf′(ξ)x→0limx3sinx−tanx=−23e2⋅−21=43e2
2022年1月13日23:31:08