Python 线性回归可视化 并将回归函数放置到图像上

import matplotlib.pyplot as plt
import scipy
import seaborn as sns

# 加载内置的数据集
df = sns.load_dataset('tips')


#create regplot
p = sns.regplot(x='total_bill', y='tip', data=df)

#calculate slope and intercept of regression equation
slope, intercept, r, p, sterr = scipy.stats.linregress(x=p.get_lines()[0].get_xdata(),
                                                       y=p.get_lines()[0].get_ydata())

#add regression equation to plot
result_string = f"$y = {slope:.2f}x + {intercept:.2f}$"

plt.figtext(0.5, 0.6, result_string)

plt.show()

运行结果如下:
在这里插入图片描述


2024年2月7日22:33:05

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值