矩阵理论| 特殊矩阵:初等矩阵(2) - 几何意义、一些特殊的初等矩阵举例(基本投影矩阵、基本镜射矩阵/Householder矩阵、初等行变换矩阵)

初等矩阵的几何意义

一般而言,初等矩阵 I + u v T \mathbf I+\bold {u} \bold {v}^T I+uvT几何意义是:将向量 x \bold x x平移 ( v T x ) u (\bold {v}^T\bold x)\bold u (vTx)u,i.e. ( I + u v T ) x = x + u ( v T x ) (\mathbf I+\bold {u} \bold {v}^T)\bold x=\bold x+\bold u(\bold {v}^T\bold x) (I+uvT)x=x+u(vTx)

  • 对于任意两个向量 x , y \mathbf x,\mathbf y x,y,一定存在初等矩阵 I − σ u v T \mathbf I-\sigma\bold {u} \bold {v}^T IσuvT,使得 ( I − σ u v T ) x = y (\mathbf I-\sigma\bold {u} \bold {v}^T)\mathbf x=\mathbf y (IσuvT)x=y
    也就是说,初等矩阵能完成任意两向量之间的映射

特别的,当 u \bold {u} u v \bold {v} v满足一些特殊关系时,初等矩阵又有其他一些特殊几何意义,下面一一介绍

一些特殊的初等矩阵

引入初等矩阵,实际上是希望将很多常用的矩阵归纳为相同的表达形式,从而简化矩阵的设计

例如,初等行变换所乘的矩阵 E 1 = [ 0 1 0 1 0 0 0 0 1 ] , E 2 = [ 1 0 0 0 3 0 0 0 1 ] , E 3 = [ 1 0 0 4 1 0 0 0 1 ] E_{1} =\left[\begin{array}{lll}0 & 1 & 0 \\1 & 0 & 0 \\0 & 0 & 1\end{array}\right], E_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\0 & 3 & 0 \\0 & 0 & 1\end{array}\right], E_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\4 & 1 & 0 \\0 & 0 & 1\end{array}\right] E1= 010100001 ,E2= 100030001 ,E3= 140010001 、正交投影至XY平面的矩阵 P = [ 1 0 0 0 1 0 0 0 0 ] P =\left[\begin{array}{lll}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 0\end{array}\right] P= 100010000 、以Y轴做镜面反射的矩阵(Householder矩阵) H = [ 1 0 0 0 − 1 0 0 0 1 ] H =\left[\begin{array}{ccc}1 & 0 & 0 \\0 & -1 & 0 \\0 & 0 & 1\end{array}\right] H= 100010001 ,都是初等矩阵

Householder矩阵 /基本镜射矩阵

∥ u ∥ = 1 \|\bold u\|=1 u=1 v = − 2 u \bold v=-2\bold u v=2u,初等矩阵 H = I − 2 u u T \bold H=\bold I-2\bold u\bold u^T H=I2uuTHouseholder矩阵

  • H T = H = H − 1 \bold H^T=\bold H=\bold H^{-1} HT=H=H1
    Householder矩阵是一个实对称、正交矩阵( H T = H \bold H^T=\bold H HT=H
    另外 H 2 = I \bold H^2=\bold I H2=I,镜射两次相当于不变
  • 变换前后的向量 x \bold x x H x \bold H\bold x Hx关于镜射超平面 s p a n { u } ⊥ span\{\bold u\}^{\bot } span{u}对称
    在这里插入图片描述

基本投影矩阵

∥ u ∥ = 1 \|\bold u\|=1 u=1 v = − u \bold v=-\bold u v=u,初等矩阵 P = I − u u T \bold P=\bold I-\bold u\bold u^T P=IuuT基本投影矩阵

要注意的是,由于 v T u = u T v = − 1 \bold {v}^T\bold {u}=\bold {u}^T\bold {v}= -1 vTu=uTv=1,基本投影矩阵并不是一个初等矩阵(因为不可逆)
但这里仍然介绍,用于对比学习

  • 可以验证基本投影矩阵满足 P 2 = P = P T \bold P^{2}=\bold P=\bold P^T P2=P=PT
  • P \bold P P将向量 x \bold x x投影到超平面 s p a n { u } ⊥ span\{\bold u\}^{\bot } span{u}
    在这里插入图片描述
    实际上,投影矩阵 P = I − u u T \bold P=\bold I-\bold u\bold u^T P=IuuT将向量投影到 s p a n { u } ⊥ span\{\bold u\}^{\bot } span{u}
    而投影矩阵 I − P = u u T \bold I-\bold P=\bold u\bold u^T IP=uuT则是将向量投影到 s p a n { u } span\{\bold u\} span{u} u \bold u u所处直线);

初等行变换

初等行变换包括三种:①交换两行;②某行乘以 c c c倍;③某行乘以 c c c倍后,加到另一方

初等行变换不改变行空间、左零空间,可能改变列空间、零空间,但是能保持列向量之间的相关性

我们已经知道,对矩阵做初等行变换,等价于用初等变换矩阵左乘该矩阵
在这里插入图片描述

实际上,这些初等变换矩阵,都可以写成如下的初等矩阵形式:
ps. 其中 e i \bold{e}_i ei是第 i i i个标准单位向量(第 i i i个元素为1,其余为0)

  • 交换 i i i j j j行: E 1 = I n + ( e i − e j ) ( e j − e i ) T E_1=I_n+(\bold{e}_i-\bold{e}_j)(\bold{e}_j-\bold{e}_i)^T E1=In+(eiej)(ejei)T

几何意义:
保证 ∥ u ∥ = 1 \|\bold u\|=1 u=1,可得 u = 1 2 ( e i − e j ) \bold u=\frac{1}{\sqrt 2}(\bold{e}_i-\bold{e}_j) u=2 1(eiej) v = − u \bold v=-\bold u v=u
E 1 = I − u u T E_1=\bold I-\bold u\bold u^T E1=IuuT,这是Householder矩阵,对应镜射变换

  • i i i行变为原来的 c c c倍: E 2 = I n + ( c − 1 ) e i e i T E_2=I_n+(c-1)\bold{e}_i\bold{e}_i^T E2=In+(c1)eieiT

几何意义:
保证 ∥ u ∥ = 1 \|\bold u\|=1 u=1,可得 u = e i \bold u=\bold{e}_i u=ei v = ( c − 1 ) e i \bold v=(c-1)\bold{e}_i v=(c1)ei E 2 E_2 E2是伸缩矩阵
E 2 x = ( I n + ( c − 1 ) e i e i T ) x = x + ( c − 1 ) e i ( e i T x ) = x + ( c − 1 ) x i e i E_2\bold x=(I_n+(c-1)\bold{e}_i\bold{e}_i^T)\bold x=\bold x+(c-1)\bold {e}_i(\bold {{e}_i}^T\bold x)=\bold x+(c-1)x_i\bold {e}_i E2x=(In+(c1)eieiT)x=x+(c1)ei(eiTx)=x+(c1)xiei,这是将 x \bold x x的第 i i i个分量变为原来的 c c c

  • j j j行乘以 c c c倍加到 i i i行: E 3 = I n + c e i e j T E_3=I_n+c\bold{e}_i\bold{e}_j^T E3=In+ceiejT

几何意义:
保证 ∥ u ∥ = 1 \|\bold u\|=1 u=1,可得 u = e i \bold u=\bold{e}_i u=ei v = c e j \bold v=c\bold{e}_j v=cej
E 3 x = ( I n + c e i e j T ) x = x + c x j e i E_3\bold x=(I_n+c\bold{e}_i\bold{e}_j^T)\bold x=\bold x+cx_j\bold {e}_i E3x=(In+ceiejT)x=x+cxjei,这是将 x \bold x x的第 j j j个分量变为原来的 c c c倍加到第 i i i个分量上
E 3 E_3 E3是一个切变 (shear) 矩阵,他将向量 x \mathbf{x} x沿着 e i \mathbf{e}_i ei方向平移 c x j cx_j cxj 个单位。

reference:
特殊矩阵 (10):基本矩阵
基本矩阵的几何意义

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值