TensorFlow使用不同的学习率

本文介绍了如何在TensorFlow中为不同网络层设置不同学习率,特别是在迁移学习中调整预训练模型和新添加层的学习率。通过自定义优化器包装器,可以实现特定层的学习率控制。需要注意的是,使用多个学习率时,要确保每个优化器仅处理一部分变量,并且所有需要更新的变量需明确指定其作用域。
摘要由CSDN通过智能技术生成

使用场景

有时候我们需要为不同的网络层设置不同的学习率。比如在fine-tune的时候,一个best practice就是在ImageNet上预训练的骨干部分使用较小的学习率,而新添加的部分使用较大的学习率。如图所示的计算图谱,如果我们希望骨干部分的残差网络学习率小一点,而新增加的aspp模块学习率稍大一点。
DeepLab
虽然TensorFlow对使用不同的学习率没有提供比较便捷的支持,但使用TF提供的低层API简单封装一下优化器便可达到我们的目的。
先写一个函数用于获取具体的优化器:

def get_solver(kind, lr):
    kind = kind.lower()
    if kind == 'adam':
        solver = tf.train.AdamOptimizer(lr)
    elif kind == 'sgd':
        solver = tf.train.GradientDescentOptimizer(lr)
    elif kind == 'momentum':
        solver = tf.train.MomentumOptimizer(lr, momentum=0.9)
    else:
        r
TensorFlow中,我们可以使用tf.train模块中的Optimizer类和learning_rate参数来控制学习率学习率是在模型训练过程中决定参数更新步长的重要超参数。 首先,我们可以使用tf.train模块中的Optimizer类来定义一个优化器对象。例如,可以使用tf.train.GradientDescentOptimizer来定义一个梯度下降优化器对象。 然后,在定义一个optimization步骤时,我们可以通过设置learning_rate参数来指定所需的学习率。例如,可以使用optimizer.minimize(loss, var_list=variables, learning_rate=0.01)来指定学习率为0.01。 如果想在训练过程中动态修改学习率,可以通过在定义optimization步骤时将学习率设置为一个Tensor而不是一个固定的常数。这样,我们可以使用tf.placeholder来创建一个占位符,并在每次执行训练步骤时,将实时的学习率值传递给占位符。 例如,可以使用learning_rate = tf.placeholder(tf.float32, shape=[])来创建一个学习率的占位符。然后,在每次执行训练步骤时,可以通过feed_dict参数来传递实时的学习率值,例如feed_dict={learning_rate: 0.01}。 这样,在每次训练步骤中,我们就可以动态地修改学习率。例如,可以通过设置不同学习率值来实现学习率衰减或动态调整学习率的算法。 总结起来,要在TensorFlow中动态修改学习率,我们可以通过创建一个学习率的占位符,并在每次执行训练步骤时,通过feed_dict参数传递实时的学习率值。这样就可以实现学习率的动态修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值