题目
题目如下,其实并不难,属于小而美的前缀和技巧中的体型。因为我之前做过这道题,所以重刷也马上就能写。但是对比我写的和之前看别人写的,明显我的代码不够简洁,一个核心的差异在于对DP数组的定义上。
问题
先看下我的代码,我对DP数组的定义是:存储以(0,0)为起点,到(i, j)的数组之和。提交代码显示超出时间限制。
两个问题:
- 边界条件处理贼麻烦,我自己写的时候也注意到了;(但这不是导致超时的原因)
- 处理超时,因为我每次要算一遍DP。
class NumMatrix:
def __init__(self, matrix: List[List[int]]):
self.matrix = matrix
def sumFromLeftCorner(self):
R, C = len(self.matrix), len(self.matrix[0])
dp = [[0 for j in range(C)] for i in range(R)]
for i in range(R):
for j in range(C):
if i == 0 and j == 0:
dp[i][j] = self.matrix[i][j]
elif i == 0:
dp[i][j] = dp[i][j-1] + self.matrix[i][j]
elif j == 0:
dp[i][j] = dp[i-1][j] + self.matrix[i][j]
else:
dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + self.matrix[i][j]
return dp
def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int:
dp = self.sumFromLeftCorner()
if row1 == 0 and col1 == 0:
return dp[row2][col2]
elif row1 == 0:
return dp[row2][col2] - dp[row2][col1 - 1]
elif col1 == 0:
return dp[row2][col2] - dp[row1 - 1][col2]
else:
return dp[row2][col2] - dp[row1-1][col2] - dp[row2][col1-1] + dp[row1-1][col1-1]
反思
对于第一个问题:
- 边界条件处理贼麻烦,我自己写的时候也注意到了;(但这不是导致超时的原因)
只要改一下DP数组的定义即可:存储以(0,0)为起点,到(i-1, j-1)的数组之和。因此DP数组的长宽都要加1;
对于第二个问题:
- 处理超时,因为我每次要算一遍DP。
将DP数组计算的过程放在__init__下面,总是只计算一次,然后重复调用其结果即可/
修改以后的代码如下,明显简洁很多!
class NumMatrix:
def __init__(self, matrix: List[List[int]]):
self.matrix = matrix
self.dp = self.sumFromLeftCorner()
def sumFromLeftCorner(self):
R, C = len(self.matrix), len(self.matrix[0])
dp = [[0 for j in range(C+1)] for i in range(R+1)]
for i in range(1, R+1):
for j in range(1, C+1):
dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + self.matrix[i-1][j-1]
return dp
def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int:
return self.dp[row2+1][col2+1] - self.dp[row1][col2+1] - self.dp[row2+1][col1] + self.dp[row1][col1]