因果推断(零):学习框架(潜在因果模型和结构因果模型)

本文探讨了使用思维导图学习新学科的方法,聚焦于潜在因果模型(如Rubin)与结构因果模型(SCM)的异同,包括它们的目的、假设、核心方法和描述语言。作者提到两者在计算干预结果差异上的相似性,以及关于因果效应估计的重点区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思维导图

学习一门新的学科,我喜欢事先制作一张“学习地图”,先宏观了解下这门学科的面貌。这样后面无论学习哪一个细小的点,我都能清楚的知道自己正在探索哪个地方,心里不会有那种不知道还要学多少东西才算真正了解了的茫然,而是十分具有方向感。(这算不算是《高效能人士的七个习惯》里的自顶向下的一种应用呢?😄)

整个因果推断方向的知识地图暂时整理成下面这个样子啦!随着学习的深入,未来应该会不断完善这张思维导图。💪
【视角一:从数据的类型分类(实验数据 or 观察数据)】
在这里插入图片描述
【视角二:从要解决的问题分类】

在这里插入图片描述

两个框架的异同点

Rubin:潜在因果模型 Pearl:结构因果模型 (SCM)
相同点目的:都要计算干预和不干预的结果差异
假设:都有一些基本假设(潜在因果模型有3个,SCM有哪些?学到了再回来补充)
方法的核心:需要控制造成估计偏差的变量(协变量)
不同点causal effect = 干预前后的结果期望差值causal effect = 干预前后的分布差异(待理解)
描述因果模型和估计的语言:回归、控制变量、匹配描述因果模型和估计的语言:条件分布(?)、do-算子
重点:因果效应的估计重点:因果效应识别/因果图构建

参考资料

[1] 结构因果模型
[2] 因果推断笔记

### SCM结构因果模型概念 结构因果模型(Structural Causal Model, SCM)是一种用于表示分析变量间因果关系的强大框架。SCM不仅能够描述观测到的数据模式,还能解释潜在因果机制[^1]。 在SCM中,通过定义一组结构性方程来捕捉各个变量如何相互影响。每个方程代表一个特定变量是如何由其他变量以及外部扰动共同决定的。这种建模方式使得SCM能够在更深层次上揭示现象背后的逻辑链条,并支持反事实推理——即探讨如果某些条件发生变化将会发生什么的情况[^2]。 ### 核心算法原理 为了实现上述目标,SCM依赖于一系列核心技术理论: - **因果图**:利用有向无环图(DAG)形式展示各因素之间可能存在的直接或间接联系; - **后门准则与前门准则**:提供识别并控制混淆因子的有效手段,确保所得到的结果反映了真实的因果效应而非虚假关联; - **Do演算**:允许研究者模拟施加干预后的预期变化,进而评估不同决策方案的影响效果; 借助这些工具,SCM可以处理复杂的多维交互作用问题,为政策制定、医疗诊断等领域提供了坚实的科学依据。 ### 应用实例 #### 时间序列数据分析中的应用 在一个具体的应用场景中,BSTS (Bayesian Structural Time Series) 模型被引入以应对时间序列数据中存在的挑战。该方法试图创建一个虚拟对照组,它能反映如果没有实施任何干预措施时系统的自然发展趋势。这有助于降低对于严格同步性的要求,使结论更加稳健可靠[^3]。 ```python import pandas as pd from causalimpact import CausalImpact data = pd.read_csv('your_data.csv') pre_period = [0, 59] post_period = [60, 79] ci = CausalImpact(data, pre_period, post_period) print(ci.summary()) ``` 这段Python代码展示了如何使用`CausalImpact`库来进行因果效应估计,其中包含了预处理阶段实际执行阶段的时间范围设定。 #### 使用神经网络增强SCM的表现力 另一种创新尝试是将现代机器学习技术融入传统SCM架构之中。例如,采用神经网络代替线性/非线性映射函数$f$,并通过最小化两个概率分布之间的最大均值差异(MMD),优化整个系统的性能表现。这种方法既保留了原有理论的优势,又增强了灵活性适应能力[^4]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值