优化基础(四):如何找到极值点?

前言

在上一篇文章优化基础(三):内部点、边界点、极值点、外部点中我们提到,边界点里有一种特殊的点叫极值点,它们拥有一些很好的性质:局部最大/小值或全局最大/小值,将会在这些极值点中诞生。

回忆一下单纯形法(想不起来的小伙伴可以参考我的文章运筹学基础(一)求解线性规划的单纯形法详解),它的几何意义就是在极值点之间跳跃寻找最优解。

那么如何找到这些极值点呢?本文通过一个例子来探讨一下。

例子

考虑如下线性规划问题:
m i n x 1 − 2 x 2 x 1 + x 2 + x 3 = 40 2 x 1 + x 2 + x 4 = 60 x 1 , x 2 , x 3 , x 4 ≥ 0 min \quad x_1 - 2x_2 \\ x_1 + x_2 + x_3 = 40 \\ 2x_1 + x_2 + x_4 = 60 \\ x_1, x_2, x_3, x_4 \geq 0 minx12x2x1+x2+x3=402x1+x2+x4=60x1,x2,x3,x40

这里我们有4个变量( n n n),2个等式( m m m)。我们知道在解方程组时,当 n = m n=m n=m时,有唯一解,当 n > m n>m n>m时,通常有无穷多个解,当 n < m n<m n<m时,通常无解。

上例中 n > m n>m n>m,说明有无穷多个解,如果要找到唯一解,我们可以将 n − m n-m nm个变量置为0。上例中可以有 C 4 2 = 6 C_4^2 = 6 C42=6种置0的办法,分别如下:

  1. x 1 = 0 , x 2 = 0 x_1 = 0, x_2=0 x1=0,x2=0:可求的 x 3 = 40 , x 4 = 60 x_3=40, x_4=60 x3=40,x4=60
  2. x 1 = 0 , x 3 = 0 x_1 = 0, x_3=0 x1=0,x3=0:可求的 x 2 = 40 , x 4 = 20 x_2=40, x_4=20 x2=40,x4=20
  3. x 1 = 0 , x 4 = 0 x_1 = 0, x_4=0 x1=0,x4=0:可求的 x 2 = 60 , x 3 = − 20 x_2=60, x_3=-20 x2=60,x3=20,infeasible
  4. x 2 = 0 , x 3 = 0 x_2 = 0, x_3=0 x2=0,x3=0:可求的 x 1 = 40 , x 4 = − 20 x_1=40, x_4=-20 x1=40,x4=20,infeasible
  5. x 2 = 0 , x 4 = 0 x_2 = 0, x_4=0 x2=0,x4=0:可求的 x 1 = 30 , x 3 = 10 x_1=30, x_3=10 x1=30,x3=10
  6. x 3 = 0 , x 4 = 0 x_3 = 0, x_4=0 x3=0,x4=0:可求的 x 1 = 20 , x 2 = 20 x_1=20, x_2=20 x1=20,x2=20

1、2、5、6就是两个等式和变量的定义域合成的解空间的极值点。

参考资料

  1. 方述诚 introduction to linear programming
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值