前言
在上一篇文章优化基础(三):内部点、边界点、极值点、外部点中我们提到,边界点里有一种特殊的点叫极值点,它们拥有一些很好的性质:局部最大/小值或全局最大/小值,将会在这些极值点中诞生。
回忆一下单纯形法(想不起来的小伙伴可以参考我的文章运筹学基础(一)求解线性规划的单纯形法详解),它的几何意义就是在极值点之间跳跃寻找最优解。
那么如何找到这些极值点呢?本文通过一个例子来探讨一下。
例子
考虑如下线性规划问题:
m
i
n
x
1
−
2
x
2
x
1
+
x
2
+
x
3
=
40
2
x
1
+
x
2
+
x
4
=
60
x
1
,
x
2
,
x
3
,
x
4
≥
0
min \quad x_1 - 2x_2 \\ x_1 + x_2 + x_3 = 40 \\ 2x_1 + x_2 + x_4 = 60 \\ x_1, x_2, x_3, x_4 \geq 0
minx1−2x2x1+x2+x3=402x1+x2+x4=60x1,x2,x3,x4≥0
这里我们有4个变量( n n n),2个等式( m m m)。我们知道在解方程组时,当 n = m n=m n=m时,有唯一解,当 n > m n>m n>m时,通常有无穷多个解,当 n < m n<m n<m时,通常无解。
上例中 n > m n>m n>m,说明有无穷多个解,如果要找到唯一解,我们可以将 n − m n-m n−m个变量置为0。上例中可以有 C 4 2 = 6 C_4^2 = 6 C42=6种置0的办法,分别如下:
- x 1 = 0 , x 2 = 0 x_1 = 0, x_2=0 x1=0,x2=0:可求的 x 3 = 40 , x 4 = 60 x_3=40, x_4=60 x3=40,x4=60
- x 1 = 0 , x 3 = 0 x_1 = 0, x_3=0 x1=0,x3=0:可求的 x 2 = 40 , x 4 = 20 x_2=40, x_4=20 x2=40,x4=20
- x 1 = 0 , x 4 = 0 x_1 = 0, x_4=0 x1=0,x4=0:可求的 x 2 = 60 , x 3 = − 20 x_2=60, x_3=-20 x2=60,x3=−20,infeasible
- x 2 = 0 , x 3 = 0 x_2 = 0, x_3=0 x2=0,x3=0:可求的 x 1 = 40 , x 4 = − 20 x_1=40, x_4=-20 x1=40,x4=−20,infeasible
- x 2 = 0 , x 4 = 0 x_2 = 0, x_4=0 x2=0,x4=0:可求的 x 1 = 30 , x 3 = 10 x_1=30, x_3=10 x1=30,x3=10
- x 3 = 0 , x 4 = 0 x_3 = 0, x_4=0 x3=0,x4=0:可求的 x 1 = 20 , x 2 = 20 x_1=20, x_2=20 x1=20,x2=20
1、2、5、6就是两个等式和变量的定义域合成的解空间的极值点。