Faster R-CNN

Faster R-CNN是R-CNN系列的进化版,通过引入Region Proposal Network(RPN)提高了目标检测的速度和准确性。RPN与Fast R-CNN共享卷积特征,实现了端到端的检测,显著提升了实时性。Faster R-CNN由RPN和Fast R-CNN两部分组成,通过 Anchor 机制和RoI Pooling进行目标检测。该算法在训练和测试阶段均表现出色,是深度学习目标检测领域的重要分支。
摘要由CSDN通过智能技术生成

参考链接:https://blog.csdn.net/wopawn/article/details/52223282

paper链接:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Breakthrough

Fast R-CNN和Faster R-CNN是R-CNN的升级版本,在准确率和实时性方面都得到了较大提升。Fast R-CNN使用Selective Search的方法提取图像的候选目标区域,Faster R-CNN引入了RPN网络(Region Proposal Network),将Proposal的提取部分嵌入到内部网络,实现了卷积层特征共享,因此整个网络模型可以完成端到端的检测任务,而不需要先执行特定的候选框搜索算法,显著提升了算法模型的实时性。

区别于SSD,Faster R-CNN是基于区域提名(Region Proposal)的方法。其核心改进是设计了一个Region Proposal Network(RPN),代替了Selective Search、EdgeBoxes等方法,速度上提升明显;在每个图像位置输出一个预测的object bounding box和objectness score,这个网络与原来的Fast R-CNN共享conv feature map,几乎不增加计算量,能够大幅提高网络的检测速度。

rcnn家族算法的步骤:

一、RCNN

1.在图像中确定约1000-2000个候选框 (selective search);

2.每个候选框内图像块缩放至相同大小,并输入到CNN内进行特征提取 ;

3.对候选框中提取出的特征,使用分类器判别是否属于一个特定类 ;

4.对于属于某一特征的候选框,用回归器进一步调整其位置。

二、Fast RCNN

1.在图像中确定约1000-2000个候选框 (ss);

2.对整张图片输进CNN,得到feature map;

3.找到每个候选框在feature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层;

4.对候选框中提取出的特征,使用分类器判别是否属于一个特定类 ;

5.对于属于某一特征的候选框,用回归器进一步调整其位置。

三、Faster RCNN

1.对整张图片输进CNN,得到feature map;

2.卷积特征输入到RPN,得到候选框的特征信息;

3.对候选框中提取出的特征,使用分类器判别是否属于一个特定类 ;

4.对于属于某一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值