参考链接:https://blog.csdn.net/wopawn/article/details/52223282
paper链接:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Breakthrough
Fast R-CNN和Faster R-CNN是R-CNN的升级版本,在准确率和实时性方面都得到了较大提升。Fast R-CNN使用Selective Search的方法提取图像的候选目标区域,Faster R-CNN引入了RPN网络(Region Proposal Network),将Proposal的提取部分嵌入到内部网络,实现了卷积层特征共享,因此整个网络模型可以完成端到端的检测任务,而不需要先执行特定的候选框搜索算法,显著提升了算法模型的实时性。
区别于SSD,Faster R-CNN是基于区域提名(Region Proposal)的方法。其核心改进是设计了一个Region Proposal Network(RPN),代替了Selective Search、EdgeBoxes等方法,速度上提升明显;在每个图像位置输出一个预测的object bounding box和objectness score,这个网络与原来的Fast R-CNN共享conv feature map,几乎不增加计算量,能够大幅提高网络的检测速度。
rcnn家族算法的步骤:
一、RCNN
1.在图像中确定约1000-2000个候选框 (selective search);
2.每个候选框内图像块缩放至相同大小,并输入到CNN内进行特征提取 ;
3.对候选框中提取出的特征,使用分类器判别是否属于一个特定类 ;
4.对于属于某一特征的候选框,用回归器进一步调整其位置。
二、Fast RCNN
1.在图像中确定约1000-2000个候选框 (ss);
2.对整张图片输进CNN,得到feature map;
3.找到每个候选框在feature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层;
4.对候选框中提取出的特征,使用分类器判别是否属于一个特定类 ;
5.对于属于某一特征的候选框,用回归器进一步调整其位置。
三、Faster RCNN
1.对整张图片输进CNN,得到feature map;
2.卷积特征输入到RPN,得到候选框的特征信息;
3.对候选框中提取出的特征,使用分类器判别是否属于一个特定类 ;
4.对于属于某一