目录
Headless的概念最初的来源与内容管理平台有关,一般是指内容管理平台中的一些应用不提供可视化界面,只是通过API方式把内容以数据的方式给前端。前端根据不同的设备类型,可以再去进行针对性地渲染和展现。
从这里,可以理解Headless实际上是把GUI部分跟数据部分进行了分离,这实际上比较符合现在技术的一种发展趋势,尤其是数据要去在不同的环境中去显示的时候。
现在回到什么是Headless BI?实际上就是把BI的数据指标层和展示层做了分离,把BI提供数据的部分以数据服务的方式提供服务,与可视化部分进行分离。
Headless BI的定义
Headless BI 是由 Ankur Goyal 和 Alana Anderson 两位硅谷投资人在这篇博客中提出了 的概念
- “Headless BI:指标只需定义一次,就可以统一地在仪表盘,以及自动化工具中使用”
为什么叫Headless
个人用大白话诠释下对 Headless BI 的理解:Headless BI 要实现的是砍掉 BI 的“头”(报表可视化),只保留指标层,通过提供各类消费接口,满足企业内丰富的消费场景;在现在普遍观点中,BI 总是和报表/可视化画上等号,而 Headless BI 将对 BI 的主流认知带来又一次革新,颠覆现在 BI 的使用方式。
解决什么问题
通过了解这些北美的指标平台(也叫 Headless BI)我们可以看到海外指标层的一些共性的特点:
希望解决企业内[1]数据口径不一致的问题,实现多端的数据消费复用。
在上面的一些截图和创始人对于产品的定位可以看出,北美的指标层主要面向的直接用户群体是数据开发人员,因此海外指标平台的指标定义部分多是使用 [2]SQL 或者简单代码来实现的。