传统的数据解决方案提供的是表,后来在大企业的大规模实践中他们逐渐发现需要提供指标,即Headless BI
传统成熟方案-以表为中心
传统方案会搭建以表为中心指标管理平台,例如阿里的oneService? 此时从生产者(pd, 研发)、消费者(应用、用户)的视角来看,会有下列问题:
数据应用方视角:
1、业务理解:表是技术概念,让数据应用方去理解表的概念(特别是一些非技术类的业务人员),中间需要有很多的转换理解成本;
2、数据加工:应用方角色各异(分析师、业务运营、技术研发等),数据能力参差不齐,直接做数据应用/分析,数据质量和效率难以保证;
3、长期运维:数据加工逻辑暴露在数据应用处,比如不同的BI工具,比如同一个BI工具内的不同的看板。缺乏统一管理,长期运维困难。
数据研发视角:
1、数据加工:针对各种特定的数据应用,需要开发对应的应用数据表,个性化加工严重、效率低且沉淀少;
2、数据咨询:不同角色对于数据应用的加工,存在各种类型的问题咨询;
3、数据质量:数据研发人工单独维护各个逻辑,存在同一指标多个地方逻辑不一致的情况,影响数据质量和长期维护;
思考: 有没可能形成一种模式,能够将应用的过程标准化,提升数据应用的效率(应用效率),同时能够比较长期的解决数据质量的问题。下面介绍一下其他团队为了解决该问题进行的探索。
Headless BI-以指标为中心
Airbnb是业界认为数据驱动做得比较好的企业. Minever平台提出一个观点,即以指标为中心的消费方案,以指标为中心搭建应用体系. 用户只要简单的请求获取指标和维度,就可以直接得到答案。 现在称这种架构为“Headless BI”。
更进一步实现管研一体,基于的数据公共层的明细表(Aloudata CAN,快手等)自动根据需求生成API。
例如快手指标中台的架构: