1. 图像的傅里叶变换
傅里叶变换可以看成是时域和频域的转换。
一维图像傅里叶变换公式(空间域->频域):
一维傅里叶变换逆变换公式(频域->空间域):
M×N图像的二维离散傅里叶变换:
M×N图像的傅里叶变换:
2. 时域和频域的转换
我们已知,任意的周期函数都可以用sinx和cosx表示。
数学上的傅里叶公式为
首先理解欧拉公式
(1) 复平面上的单位圆(用三角函数表示)
如图所示,以此类推:半径为a的圆可以表示为
(2) 复平面上乘法的几何意义:
我们可以理解为角度增加π/6 ,长度就在原来的长度下
(3) 欧拉公式为:对于θ∈R,
证:由泰勒公式:
将x=iθ代入 可得到
因此结合(1)我们可以把看作是单位圆的圆周运动。
由于公式:
可知n->无穷时,1/n->0,结合(2)可知, 为在单位圆上转动1弧度,为在单位圆上转动弧度。
(4) 由欧拉公式可以得到
当θ时时间变量t时, ,(2π秒转一周时,T=2π)得到
因此时域到频域转换为下图
代数上 Im表示虚部,sint=Im()
Re表示实部,cost=Re()
3. 理解傅里叶变换的频率、相位、幅度
由=> F(w)=R(w)+iI(w)
F(w)=Asin(wx+φ)有三个自由度A、w、φ
频谱、幅度:
能量谱:
相位谱:
傅里叶变换可看成是多个正交基表示的函数,1/k表示在频率为k时的信号强度。
(ps:没学过MATLAB,只能用手画图充数了==)
上图右下角为表示一个0/1信号时,所有的正弦信号的频率图。
4. 图像傅里叶频谱图(傅里叶变换即将信号分成不同频率部分)
傅里叶频谱图中主要考虑的是每个正弦信号的幅度(magnitude)。
(1)一个正弦信号的图谱:
傅里叶变换与傅里叶级数的互相转化:
离散的傅里叶变换
注:空间频率是指单位长度内亮度作周期性变化的次数
时域k为对时间频率,在图像中是对整个图像的变换(k represents cycles per image),因此为k/N。 K的范围为(-N/2,N/2),理解为对于有N 个像素的图像,正弦信号的摆动是从白->黑->白,2个像素为一个周期,所以频率为N/2
(2)二维图像的傅里叶变换
这里我们首先了解高频和低频的意思。
高频:指灰度图像变化较大的地方,一般指边缘,代表了图像的细节和纹理。
低频:灰度变化慢,边缘以内或意外的部分,表示轮廓。
应用:锐化图片:能量图后者比前者前者更亮(低频部分频率更低,则突出高频部分,即锐化)。可以通过两倍原来的图像并减去加上了一点模糊的原图像。
分析:傅里叶频谱图上的点指该点与邻域点差异的强弱,即梯度大小,或该点频率大小,梯度大,该点亮度强,否则亮度弱。
若暗的点数更多,说明图像较柔和,否则图像比较尖锐。
(3)FT频谱图分析:
特征:①当曲线域面积增倍,频率图高度增强
②函数长度增倍,相同间隔下,频率图中零点数量加倍。
因此可以得到空间域,频率域
一维: 二维:
特性:傅里叶变换具有对称性
① 频率图像经常以图像中心坐标为原点,左上-右下,右上-左下对称
② 图像中心为原始图像平均亮度,频率为0,从图像中心向外,频率增高,高亮度表明频率特征明显
③ 频率域图像中心明显的频率变化方向与原图像中地物方向垂直。
5. 应用:
① 图像增强与去噪
噪音是高频分量,通过低通滤波器来滤除高频
边缘是高频分量,增加高频分量增强图像边缘
② 图像分割之边缘检测(提高高频分量)
③ 特征提取
形状特征:傅里叶描述
纹理特征:通过傅里叶计算纹理特征
其他特征:将提取的特征值进行傅里叶变换,具有平移,伸缩,旋转不变性。
④ 高斯函数的傅里叶变换是它本身(高斯函数在时域和频域分布一样)推理下次补上。
参考:https://www.zhihu.com/question/19714540