【深度学习】回归任务评价方法(MSE、MAE、RMSE)

概念

在回归(Regression)方法中,我们预测一系列连续的值,在预测完后需要评价预测结果的好坏。关于这个评价标准,目前学术界有多种标准。在深度学习中最常见的是 MSEMAE

对照表

评价方法公式等同于求导互相转换
均方误差(MSE) 1 N ∑ i = 1 N ⟮ y − y ^ ⟯ 2 \frac{1}{N}\sum_{i=1}^N{\lgroup{y}-\hat{y}\rgroup}^2 N1i=1Nyy^2L2 2 N ∑ i = 1 N ⟮ y − y ^ ⟯ ⋅ y ^ ′ \frac{2}{N}\sum_{i=1}^N{\lgroup{y}-\hat{y}\rgroup} \cdot {\hat{y}^{\prime}} N2i=1Nyy^y^ M S E = = R M S E 2 {MSE} == {RMSE}^2 MSE==RMSE2
MAE 1 N ∑ i = 1 N ∣ y − y ^ ∣ \frac{1}{N}\sum_{i=1}^N\mid{y}-\hat{y}\mid N1i=1Nyy^L1 ± 1 N ∑ i = 1 N y ^ ′ \pm \frac{1}{N}\sum_{i=1}^N {\hat{y}^{\prime}} ±N1i=1Ny^
RMSE 1 N ∑ i = 1 N ⟮ y − y ^ ⟯ 2 \sqrt{\frac{1}{N}\sum_{i=1}^N{\lgroup{y}-\hat{y}\rgroup}^2} N1i=1Nyy^2 R M S E = = M S E {RMSE} == \sqrt{MSE} RMSE==MSE
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值