概念
在回归(Regression)方法中,我们预测一系列连续的值,在预测完后需要评价预测结果的好坏。关于这个评价标准,目前学术界有多种标准。在深度学习中最常见的是 MSE
和 MAE
。
对照表
评价方法 | 公式 | 等同于 | 求导 | 互相转换 |
---|---|---|---|---|
均方误差(MSE) | 1 N ∑ i = 1 N ⟮ y − y ^ ⟯ 2 \frac{1}{N}\sum_{i=1}^N{\lgroup{y}-\hat{y}\rgroup}^2 N1∑i=1N⟮y−y^⟯2 | L2 | 2 N ∑ i = 1 N ⟮ y − y ^ ⟯ ⋅ y ^ ′ \frac{2}{N}\sum_{i=1}^N{\lgroup{y}-\hat{y}\rgroup} \cdot {\hat{y}^{\prime}} N2∑i=1N⟮y−y^⟯⋅y^′ | M S E = = R M S E 2 {MSE} == {RMSE}^2 MSE==RMSE2 |
MAE | 1 N ∑ i = 1 N ∣ y − y ^ ∣ \frac{1}{N}\sum_{i=1}^N\mid{y}-\hat{y}\mid N1∑i=1N∣y−y^∣ | L1 | ± 1 N ∑ i = 1 N y ^ ′ \pm \frac{1}{N}\sum_{i=1}^N {\hat{y}^{\prime}} ±N1∑i=1Ny^′ | |
RMSE | 1 N ∑ i = 1 N ⟮ y − y ^ ⟯ 2 \sqrt{\frac{1}{N}\sum_{i=1}^N{\lgroup{y}-\hat{y}\rgroup}^2} N1∑i=1N⟮y−y^⟯2 | R M S E = = M S E {RMSE} == \sqrt{MSE} RMSE==MSE |