函数与极限
1.函数
1.1 定义
函数 是从一个集合 (称为定义域,包含于实数集R)到另一个集合 (称为值域)的映射。对于定 义域中的每一个元素 ,函数f都指定了一个唯一的元素 在值域中,记作
其中叫做自变量,叫做因变量, 叫做映射规则, 表示一个函数值。
函数的两要素是指函数的定义域和值域。
定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有 值的集合。
值域是函数中所有可能的输出值的集合。换句话说,值域是函数 在定义域内所有可能的 值的集合。
确定定义域和值域的方法
1. 定义域:
- 代数方法:通过分析函数的表达式,确定哪些 值使得函数有意义。例如,分母不能为零, 对数函数的输入必须为正数,平方根的输入必须为非负数等。
- 图形方法:通过绘制函数的图形,观察 x 轴上的范围,确定定义域。
2. 值域:
- 代数方法:通过分析函数的表达式,确定 的取值范围。例如,平方函数的结果总是非负 的,正弦函数的结果在 −1 和 1 之间。
- 图形方法:通过绘制函数的图形,观察 y 轴上的范围,确定值域。
1.2 函数的特性
1.2.1 有界性
有界:
一个函数 在其定义域 上称为有界的,如果存在两个实数 和 ,使得对于定义域中的任意,都有:
其中:
-
称为函数的上界。
-
称为函数的下界。
一个函数有界的充要条件:既有上界,又有下界。
1.2.2 单调性
定义:
一个函数 在其定义域 上称为单调的,如果对于定义域中的任意 和 ,当 时,有:
- 单调递增:如果 ,则函数 是单调递增的。
- 严格单调递增:如果 ,则函数 是严格单调递增的。
- 单调递减:如果 ,则函数 是单调递减的。
- 严格单调递减:如果 ,则函数 是严格单调递减的。
1.2.3 奇偶性
一个函数 在其定义域 上称为:
- 偶函数:如果对于定义域中的任意 ,都有 ,则函数 是偶函数。偶函数的图形关于 y 轴对称。
- 奇函数:如果对于定义域中的任意 ,都有 ,则函数 是奇函数。奇函数的图形关于原点对称。
1.2.4 周期性
定义
一个函数 在其定义域 上称为周期函数,如果存在一个正数 ,使得对于定义域中的任意 ,都有:
其中 称为函数的周期。如果存在最小的正数 满足上述条件,则称 为函数的最小正周期。
1.3 反函数
定义
给定一个函数 ,如果存在一个函数 ,使得对于中的每一个 ,都有 ,并且对于 中的每一个 ,都有 ,则称 为 的反函数,记作 换句话说,反函数 满足以下两个条件:
1. 对于中的每一个,有
2. 对于中的每一个,有
注意:原函数和反函数是关于对称的。
存在条件
一个函数 存在反函数的充分必要条件是 是双射(即一一对应)。具体来说:
-
一一对应:对于 中的任意两个不同的元素 和 ,都有 。
-
满射:对于 中的每一个元素 ,都存在 中的一个元素 ,使得 。
求解反函数
求函数的反函数通常涉及以下步骤。假设我们有一个函数 ,我们希望找到它的反函数。以下是详细的求解过程:
步骤 1:验证函数是否存在反函数
首先,需要验证函数 是否是双射(即一一对应)。只有当 是双射时,它才存在反函数。
步骤 2:解方程
假设 ,我们需要解这个方程来找到 的表达式。具体来说,我们需要将 表示为 的函数:。
步骤 3:交换 x 和 y
在得到 的表达式后,将 和 互换,得到反函数。
步骤 4:验证反函数
最后,验证反函数是否满足反函数的定义,即:
-
对于 中的每一个 ,有
-
对于 中的每一个 ,有
2.极限
2.1 数列极限
定义
一个数列 的极限是 ,如果对于任意给定的正数 ,总存在一个正整数 ,使得对于所有 ,都有:
换句话说,当 足够大时,数列的项 可以无限接近。此时,我们称数列 收敛于 ,记作:
如果数列不收敛于任何有限值,则称该数列为发散的。
理解:对于任意小的区间 ,对于某个正整数,使N后边的所有项,落在 的这个区间内。
极限的性质
- 唯一性:如果数列收敛,则其极限是唯一的。
- 有界性:如果数列收敛,则它是有界的。
- 保序性:如果数列 和 都收敛,且对于所有 ,都有 ,则
- 四则运算:如果数列 和 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。
极限的判定
-
直接法:通过分析数列的通项公式,直接计算其极限。
-
夹逼定理:
-
如果数列、和 满足 ,且
,则
-
2.2 函数的极限
定义
设函数 在点 的某个去心邻域内有定义(在a处可以没有定义)。如果对于任意给定的正数 (无论它多么小),总存在正数 ,使得当 时,有
则称 为函数当 趋近于 时的极限,记作
2.3 无穷大与无穷小
-
无穷大:如果对于任意大的正数 ,总存在正数 ,使得当 时,有 ,则称 在 趋近于 时趋向于无穷大,记作
无穷大分为正无穷大和负无穷大。
无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;无穷大乘无穷大肯定为无穷大。
-
无穷小:如果
或
,则称 在 趋近于或趋近于时的无穷小。
运算法则:
1.无穷小加、减、乘无穷小都是无穷小
2.有界函数与无穷小的乘积也为无穷小
3.常数与无穷小的乘积也为无穷小
4.无穷小除以无穷小不确定。
注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别:
负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。如果是无穷大,则为无穷小;如果是无穷小,则为无穷大。
-
高阶无穷小
设 和 是两个无穷小量(即当 时, 且 )。
如果
,则称 是 的高阶无穷小,记作 。即α的收敛速度比 快。
如:
比收敛速度快,则是的高阶无穷小,记作
- 低阶无穷小 设 和 是两个无穷小量。如果,则称 是 的低阶无穷小。
-
同阶无穷小
设 和 是两个无穷小量。
如果
(其中是一个非零常数)
,则称 和 是同阶无穷小。
-
等价无穷小
-
设 α 和 β 是两个无穷小量(即当 x→a 时, α→0且 β→0)。
-
如果
,则称 α 和 β 是等价无穷小,记作 α∼β。
-
-
k阶无穷小
-
设 α和 β 是两个无穷小量,且
当
-
如果
(其中 是一个非零常数)
,则称 α 是 β 的 k 阶无穷小。
-
2.4 无穷大极限
函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。
2.5 极限存在准则
2.5.1 单调有界准则
如果函数 f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。