DAY7 高等数学基础

函数与极限

1.函数

1.1 定义

函数 f(x) 是从一个集合 X(称为定义域,X包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定 义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作

y = f(x),x\in X

其中x叫做自变量y叫做因变量f 叫做映射规则f(x) 表示一个函数值

函数的两要素是指函数的定义域和值域。

定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有 x 值的集合。

值域是函数中所有可能的输出值的集合。换句话说,值域是函数 f(x)在定义域内所有可能的 y 值的集合。

确定定义域和值域的方法

1. 定义域:

  • 代数方法:通过分析函数的表达式,确定哪些 x 值使得函数有意义。例如,分母不能为零, 对数函数的输入必须为正数,平方根的输入必须为非负数等。
  • 图形方法:通过绘制函数的图形,观察 x 轴上的范围,确定定义域。

2. 值域:

  • 代数方法:通过分析函数的表达式,确定 f(x) 的取值范围。例如,平方函数的结果总是非负 的,正弦函数的结果在 −1 和 1 之间。
  • 图形方法:通过绘制函数的图形,观察 y 轴上的范围,确定值域。

1.2 函数的特性

1.2.1 有界性

有界:

一个函数f(x) 在其定义域 X上称为有界的,如果存在两个实数 M 和 m,使得对于定义域中的任意x,都有:

m<f(X)<M

其中:

  • M称为函数的上界。

  • m称为函数的下界。

一个函数有界的充要条件:既有上界,又有下界。

1.2.2 单调性

定义:

一个函数 f(x) 在其定义域 X上称为单调的,如果对于定义域中的任意 x1 和 x2,当 x1<x2 时,有:

  • 单调递增:如果 f(x1)\leqslant f(x2),则函数 f是单调递增的。
  • 严格单调递增:如果 f(x1)<f(x2),则函数 f是严格单调递增的。
  • 单调递减:如果 f(x1)\geqslant f(x2),则函数 f是单调递减的。
  • 严格单调递减:如果 f(x1)>f(x2),则函数 f是严格单调递减的。
1.2.3 奇偶性

一个函数 f(x) 在其定义域 X 上称为:

  • 偶函数:如果对于定义域中的任意 x,都有 f(-x)=f(x),则函数 f是偶函数。偶函数的图形关于 y 轴对称。
  • 奇函数:如果对于定义域中的任意 x,都有 f(-x)=-f(x),则函数 f是奇函数。奇函数的图形关于原点对称。
1.2.4 周期性

定义

一个函数 f(x) 在其定义域 X 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:

f(x+T)=f(x)

其中 T 称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。

1.3 反函数

定义

给定一个函数 f:X\rightarrow Y,如果存在一个函数 g:Y\rightarrow X,使得对于X中的每一个 x,都有 g(f(x))=x,并且对于 Y中的每一个 y,都有 f(g(y))=y,则称 g 为 f 的反函数,记作 f^{-1}换句话说,反函数 f^{-1} 满足以下两个条件:

1. 对于X中的每一个x,有 f^{-1}(f(x))=x

2. 对于Y中的每一个y,有 f(f^{-1}(y))=y

注意:原函数和反函数是关于y=x对称的。

存在条件

一个函数 f存在反函数的充分必要条件是 f是双射(即一一对应)。具体来说:

  1. 一一对应:对于 X 中的任意两个不同的元素 x1x2,都有 f(x1)\neq f(x2)

  2. 满射:对于 Y中的每一个元素 y,都存在 X 中的一个元素 x,使得 f(x)=y

求解反函数

求函数的反函数通常涉及以下步骤。假设我们有一个函数 f:X\rightarrow Y,我们希望找到它的反函数f^{-1}:Y\rightarrow X。以下是详细的求解过程:

步骤 1:验证函数是否存在反函数

首先,需要验证函数 f 是否是双射(即一一对应)。只有当 f 是双射时,它才存在反函数。

步骤 2:解方程 y=f(x)

假设 y=f(x),我们需要解这个方程来找到 x 的表达式。具体来说,我们需要将 x 表示为 y 的函数:x=g(y)

步骤 3:交换 x 和 y

在得到 x 的表达式后,将 xy 互换,得到反函数x=f^{-1}(y)

步骤 4:验证反函数

最后,验证反函数是否满足反函数的定义,即:

  1. 对于 X 中的每一个 x,有

    f^{-1}(f(x))=x

  2. 对于 Y中的每一个 y,有

    f(f^{-1}(y))=y

2.极限

2.1 数列极限

定义

一个数列 \left \{ a_{n} \right \}的极限是 L,如果对于任意给定的正数 \epsilon,总存在一个正整数 N,使得对于所有 n>N,都有:

\left | a_{n}-L \right |<\epsilon

换句话说,当 n 足够大时,数列的项 a_{n}可以无限接近L。此时,我们称数列 \left \{ a_{n} \right \} 收敛于 L,记作:

\lim_{n \to\infty }a_{n} =L

如果数列不收敛于任何有限值,则称该数列为发散的。

理解:对于任意小的区间 \epsilon,对于某个正整数N,使N后边的所有项n\left | a_{n}-L \right |落在 \epsilon 的这个区间内。

极限的性质

  1. 唯一性:如果数列\left \{ a_{n} \right \}收敛,则其极限是唯一的。
  2. 有界性:如果数列\left \{ a_{n} \right \}收敛,则它是有界的。
  3. 保序性:如果数列\left \{ a_{n} \right \}\left \{ b_{n} \right \}都收敛,且对于所有 n,都有 a_{n}\leqslant b_{n},则

\lim_{n \to \infty }a_{n}\leqslant \lim_{n \to \infty }b_{n}

  1. 四则运算:如果数列 \left \{ a_{n} \right \}\left \{ b_{n} \right \}都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。

极限的判定

  1. 直接法:通过分析数列的通项公式,直接计算其极限。

  2. 夹逼定理

    • 如果数列\left \{ a_{n} \right \}\left \{ b_{n} \right \}\left \{ c_{n} \right \}满足 a_{n}\leqslant b_{n}\leqslant c_{n},且

      \lim_{n \to \infty }a_{n}=\lim_{n \to \infty }c_{n}=L

       

      ,则

      \lim_{n \to \infty }b_{n}=L

2.2 函数的极限

定义

设函数f(x) 在点 x=a 的某个去心邻域内有定义(在a处可以没有定义)。如果对于任意给定的正数 \epsilon(无论它多么小),总存在正数 \delta,使得当 0<\left | x-a \right |<\delta时,有

\left | f(x)-L \right |<\epsilon

则称 L 为函数f(x)x 趋近于 a 时的极限,记作

\lim_{x\rightarrow a}f(x)=L

2.3 无穷大与无穷小

  1. 无穷大:如果对于任意大的正数 M,总存在正数 \delta,使得当 0<\left | x-a \right |<\delta时,有 \left | f(x) \right |>M,则称 f(x)x 趋近于 a 时趋向于无穷大,记作

    \lim_{x\rightarrow a}f(x)=\infty

     

    无穷大分为正无穷大和负无穷大。

    无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;无穷大乘无穷大肯定为无穷大。

  2. 无穷小:如果

    \lim_{x\rightarrow a}f(x)=0 或 \lim_{x\rightarrow \infty }f(x)=0

     

    ,则称 f(x)x 趋近于a或趋近于\infty时的无穷小。

    运算法则:

    1.无穷小加、减、乘无穷小都是无穷小

    2.有界函数与无穷小的乘积也为无穷小

    3.常数与无穷小的乘积也为无穷小

    4.无穷小除以无穷小不确定。

    注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别:

    负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。如果f(x)是无穷大,则\frac{1}{f(x)}为无穷小;如果f(x)是无穷小,则\frac{1}{f(x)}为无穷大。

  3. 高阶无穷小

    \alpha\beta 是两个无穷小量(即当 x\rightarrow a时, \alpha \rightarrow 0\beta \rightarrow 0)。

    如果

    \lim_{x\rightarrow a}\frac{\alpha }{\beta }=0

     

    ,则称 \alpha\beta的高阶无穷小,记作 \alpha =o(\beta )。即α的收敛速度比 \beta快。

    如:

    \lim_{x\rightarrow 0}\frac{x^{2}}{3x }=0

     

    x^{2}3x收敛速度快,则x^{2}3x的高阶无穷小,记作

    x^{2}=o(3x)

  4. 低阶无穷小                                                                                                                                      设\alpha\beta 是两个无穷小量。如果\lim_{x\rightarrow a} \frac{\alpha }{\beta }=\infty,则称\alpha\beta 的低阶无穷小。
  5. 同阶无穷小

    \alpha\beta 是两个无穷小量。

    如果

    \lim_{x\rightarrow a}\frac{\alpha }{\beta }=c(其中c是一个非零常数)

     

    ,则称 \alpha\beta 是同阶无穷小。

  6. 等价无穷小

    • 设 α 和 β 是两个无穷小量(即当 x→a 时, α→0且 β→0)。

    • 如果

      \lim_{x\rightarrow a}\frac{\alpha }{\beta }=1

       

      ,则称 α 和 β 是等价无穷小,记作 α∼β。

  7. k阶无穷小

    • 设 α和 β 是两个无穷小量,且

      \beta =o(x^{k})x\rightarrow 0

    • 如果

      \lim_{x\rightarrow a}\frac{\alpha }{\beta ^{k}}=c(其中 c 是一个非零常数)

       

      ,则称 α 是 β 的 k 阶无穷小。

2.4 无穷大极限

函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。

2.5 极限存在准则

2.5.1 单调有界准则

如果函数 f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值