问题一:n个数,找到一个长度>=k的连续区间,使得这个区间里所有的值之和最大
输入样例: 对应输出:
7 5 1
3 6 -8 9 -12 1 2
问题二:n个数,找到一个长度<=k的连续区间,使得这个区间里所有的值之和最大
输入样例: 对应输出:
7 5 10
3 6 -8 9 -12 1 2
问题一:前缀和
#include<cstdio>
#include<iostream>
using namespace std;
int t[1000005], a[1000005];
int main(void)
{
int i, n, k, l, r;
while(scanf("%d%d", &n, &k)!=EOF)
{
for(i=1;i<=n;i++)
{
scanf("%d", &t[i]);
a[i] = a[i-1]+t[i];
}
l = 2147483000;
r = -2147483000;
for(i=k;i<=n;i++)
{
if(a[i-k]<l) l = a[i-k];
if(a[i]-l>r) r = a[i]-l;
}
printf("%d\n", r);
}
return 0;
}
问题二:单调队列优化dp
http://blog.csdn.net/oiljt12138/article/details/51174560
O(n²)的方法显而易见,答案就是max(sum[i]-min{sum[i-k]..sum[i-1]}, 1<=k<=n)
主要就是如何快速求出min{sum[i-k]..sum[i-1]}
#include<stdio.h>
#include<algorithm>
using namespace std;
#define LL long long
typedef struct
{
int s;
int id;
}Res;
Res q[1000010];
int sum[1000010];
int main(void)
{
int i, n, k, h, t, ans, r;
scanf("%d%d", &n, &k);
for(i=1;i<=n;i++)
{
scanf("%d", &sum[i]);
sum[i] += sum[i-1];
}
q[0].s = q[0].id = 0;
h = t = 0;
for(i=1;i<=n;i++)
{
r = sum[i]-q[t].s;
ans = max(ans, r);
while(h>=t && sum[i]<q[h].s)
h--;
q[++h].s = sum[i], q[h].id = i;
while(q[t].id<=i-k)
t++;
}
printf("%d\n", ans);
return 0;
}