有长度要求的区间最大值

问题一:n个数,找到一个长度>=k的连续区间,使得这个区间里所有的值之和最大

输入样例:                        对应输出:

7 5                                    1

3 6 -8 9 -12 1 2


问题二:n个数,找到一个长度<=k的连续区间,使得这个区间里所有的值之和最大

输入样例:                        对应输出:

7 5                                    10

3 6 -8 9 -12 1 2



问题一:前缀和

#include<cstdio>
#include<iostream>
using namespace std;
int t[1000005], a[1000005];
int main(void)
{
	int i, n, k, l, r;
	while(scanf("%d%d", &n, &k)!=EOF)
	{
		for(i=1;i<=n;i++)
		{
			scanf("%d", &t[i]);
			a[i] = a[i-1]+t[i];
		}
		l = 2147483000;
		r = -2147483000;
		for(i=k;i<=n;i++)
		{
			if(a[i-k]<l)  l = a[i-k];
			if(a[i]-l>r)  r = a[i]-l;
		}
		printf("%d\n", r);
	}
	return 0;
}



问题二:单调队列优化dp

http://blog.csdn.net/oiljt12138/article/details/51174560

O(n²)的方法显而易见,答案就是max(sum[i]-min{sum[i-k]..sum[i-1]}, 1<=k<=n)

主要就是如何快速求出min{sum[i-k]..sum[i-1]}

#include<stdio.h>
#include<algorithm>
using namespace std;
#define LL long long
typedef struct
{
    int s;
    int id;
}Res;
Res q[1000010];
int sum[1000010];
int main(void)
{
	int i, n, k, h, t, ans, r;
    scanf("%d%d", &n, &k);
    for(i=1;i<=n;i++)
    {
		scanf("%d", &sum[i]);
		sum[i] += sum[i-1];
    }
    q[0].s = q[0].id = 0;
	h = t = 0;
    for(i=1;i<=n;i++)
    {
		r = sum[i]-q[t].s;
		ans = max(ans, r);
		while(h>=t && sum[i]<q[h].s)
			h--;
		q[++h].s = sum[i], q[h].id = i;
		while(q[t].id<=i-k)
			t++;
    }
    printf("%d\n", ans);
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值