CDQ分治:
本质:对询问进行分治
优点:和莫队分块一样都属于技巧,关键时刻能免去复杂的数据结构,常数小
缺点:必须离线
参考:http://blog.csdn.net/hbhcy98/article/details/50642773
http://www.cnblogs.com/mlystdcall/p/6219421.html
问题提出:
假设有数十万个操作,每次可以是修改和查询,可以这样理解:
对于第x个查询,只有前面的部分操作会对该查询有影响,而部分操作没有影响,
例如一个空的坐标系,操作C(x, y)表示添加一个点(x, y),Q(x, y)表示查询在(0, 0)到(x, y)这个范围内有多少个点
那么C(1, 2)会让Q(3, 5)的答案+1,C(4, 1)却对Q(3, 5)没有影响
这样每次查询的答案相当于之前若干次操作的叠加!
思考:
那么理论上只要对于每个询问,只要知道有多少个操作对它有贡献就行了,
而很容易发现,很好判定一个操作是否对某次查询有贡献,就像上面坐标系的例子:
对于C(x, y)和Q(x', y'),①满足x<=x'就可能有贡献,但只要x>x'就一定不可能有贡献,这就相当于是一个“序”
所以可以先将所有的C和Q作为一个整体按x排序
但是不一定,对于C(x, y)和Q(x', y'),还必须满足②y<=y',这就相当于第二个"序",也就是说按x排完序之后前面满足条件y<=y'的C(x, y)的数量才是Q(x', y')的答案,考虑暴力,遇到一个C(x, y)就让cnt[y]++,遇到一个Q(x', y')的话查询cnt[]的前缀和,答案就是∑cnt[i] (0<=i<=y),这是经典问题,可以用树状数组解决
其实到这里对于先给n个加点操作,再给m个查询操作的问题就可以解决了!
但是万一加点操作和查询操作(也就是C和Q)混在一起呢?这样就相当于有第三个“序”,在满足x<'x'和y<=y'的条件下还要满足这个C出现在这个Q之前!令C(x, y, s)表示在第s秒添加一个点(x, y),Q(x', y', s')表示查询在s'秒之前(0, 0)到(x, y)这个范围内有多少个点,第三维又该如何解决呢?
解决:
这就是“三维偏序问题”,第一维直接排序,第二维可以树状数组,第三维就必须用CDQ分治了
参考题目:bzoj 3262:陌上花开(三维偏序裸题)
当然CDQ分治本质当然还是分治,只不过是对操作和询问的分治,就拿上面例子,大致步骤如下:
①对于所有的C(x, y, s)、Q(x', y', s')当然还是按x排序(y仍然用树状数组暴力)
②假设共有n个操作+查询,开始二分,第一步当然是整个区间[1, n]
③m = (1+n)/2,将整个区间分为左右两个部分,更新y用树状数组就不说了,所有在[1, m]区间内满足s<m的C操作对所有在(m, n]范围内满足s'>m的Q询问有贡献,计算这个贡献,然后重排,在保证x有序的情况下将所有满足s<=m的全部丢在左区间,将所有s>m+1的全部丢在右区间,递归区间[1, m]和(m, n],重复步骤③
④结束,输出答案!
这样问题就解决了,复杂度O(nlog²n)
下面看题
2683: 简单题
Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 1565 Solved: 632
[ Submit][ Status][ Discuss]
Description
命令 | 参数限制 | 内容 |
1 x y A | 1<=x,y<=N,A是正整数 | 将格子x,y里的数字加上A |
2 x1 y1 x2 y2 | 1<=x1<= x2<=N 1<=y1<= y2<=N | 输出x1 y1 x2 y2这个矩形内的数字和 |
3 | 无 | 终止程序 |
Input
Output
Sample Input
Sample Output
没错就是上面例子中的那道题,题解已经给出了
那就看程序吧,可以将每个查询拆成四个(0, 0)到(x, y)的部分
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n, t, z, tre[500005], ans[200005];
typedef struct Res
{
int x, y, val, opt, id, xd;
bool operator < (const Res &b) const
{
if(x<b.x || x==b.x && y<b.y || x==b.x && y==b.y && opt<b.opt)
return 1;
return 0;
}
}Res;
Res s[800005], L[400005], R[400005];
void Update(int x, int val)
{
while(x<=n)
{
tre[x] += val;
x += x&-x;
}
}
int Query(int x)
{
int ans = 0;
while(x)
{
ans += tre[x];
x -= x&-x;
}
return ans;
}
void Cdq(int l, int r)
{
int m, i, p, q;
if(l==r)
return;
m = (l+r)/2;
for(i=l;i<=r;i++)
{
if(s[i].opt==1 && s[i].id<=m)
Update(s[i].y, s[i].val);
if(s[i].opt==2 && s[i].id>m)
ans[s[i].xd] += Query(s[i].y)*s[i].val;
}
for(i=l;i<=r;i++)
{
if(s[i].opt==1 && s[i].id<=m)
Update(s[i].y, -s[i].val);
}
p = q = 0;
for(i=l;i<=r;i++)
{
if(s[i].id<=m)
L[++p] = s[i];
else
R[++q] = s[i];
}
for(i=l;i<=m;i++)
s[i] = L[i-(l-1)];
for(i=m+1;i<=r;i++)
s[i] = R[i-m];
Cdq(l, m);
Cdq(m+1, r);
}
int main(void)
{
int i, opt, x1, y1, x2, y2;
scanf("%d", &n);
while(1)
{
scanf("%d", &opt);
if(opt==3)
break;
else if(opt==1)
{
t++;
scanf("%d%d%d", &s[t].x, &s[t].y, &s[t].val);
s[t].opt = 1, s[t].id = t;
}
else
{
z++;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
t++, s[t].x = x1-1, s[t].y = y1-1, s[t].xd = z, s[t].id = t, s[t].val = 1, s[t].opt = 2;
t++, s[t].x = x2, s[t].y = y2, s[t].xd = z, s[t].id = t, s[t].val = 1, s[t].opt = 2;
t++, s[t].x = x1-1, s[t].y = y2, s[t].xd = z, s[t].id = t, s[t].val = -1, s[t].opt = 2;
t++, s[t].x = x2, s[t].y = y1-1, s[t].xd = z, s[t].id = t, s[t].val = -1, s[t].opt = 2;
}
}
sort(s+1, s+t+1);
Cdq(1, t);
for(i=1;i<=z;i++)
printf("%d\n", ans[i]);
return 0;
}