知识总结—分析学(2)

知识总结—分析学(2)

C ∗ C^* C 代数

定义与性质

为了定义 C ∗ C^* C 代数,我们复习一下代数、Banach 代数等的定义。

定义【代数】

A \mathscr{A} A 是一个线性空间,对 A \mathscr{A} A 中任意两个元素 x , y x,y x,y,规定乘积 x y ∈ A xy\in\mathscr{A} xyA,满足对 ∀ x , y , z ∈ A \forall x,y,z\in\mathscr{A} x,y,zA ∀ \forall α \alpha α,有

(1)结合律: x ( y z ) = ( x y ) z x(yz)=(xy)z x(yz)=(xy)z

(2)分配律: x ( y + z ) = x y + x z , ( x + y ) z = x z + y z x(y+z)=xy+xz,(x+y)z=xz+yz x(y+z)=xy+xz,(x+y)z=xz+yz

(3) α ( x y ) = ( α x ) y = x ( α y ) \alpha (xy)=(\alpha x)y=x(\alpha y) α(xy)=(αx)y=x(αy)

则称 A \mathscr{A} A 是一个代数;如果存在 e ∈ A e\in\mathscr{A} eA,使得
e x = x e = x , ∀ x ∈ A ex=xe=x,\quad\forall x\in\mathscr{A} ex=xe=x,xA
就称 e e e 是代数 A \mathscr{A} A​ 的一个单位元。

注:线性空间主要控制了加法结构,而代数则在加法结构的基础上控制了乘法结构。

定义【Banach 代数】

A \mathscr{A} A​ 是一个赋范线性空间,同时又是一个代数,而且
∥ x y ∥ ≤ ∥ x ∥ ∥ y ∥ , ∀ x , y ∈ A \lVert xy\rVert\leq\lVert x\rVert\lVert y\rVert,\quad\forall x,y\in\mathscr{A} xyxy,x,yA
则称 A \mathscr{A} A 是一个赋范代数,完备的赋范代数称为 Banach 代数。

注:Banach 性质始终是对赋范线性空间的完备性的要求,只不过由于代数相比线性空间多了乘法结果,所以对范数也加了关于乘法结果的要求,以保证乘法运算的连续性。

定义【对合】

A \mathscr{A} A 是一个代数,映射 ∗ : A → A *:\mathscr{A}\to\mathscr{A} :AA 称为一个对合,指 ∀ x , y ∈ A , α , β ∈ K \forall x,y\in\mathscr{A},\alpha,\beta\in K x,yA,α,βK,有
( α x + β y ) ∗ = α ˉ x ∗ + β ^ y ∗ ( x y ) ∗ = y ∗ x ∗ ( x ∗ ) ∗ = x (\alpha x+\beta y)^*=\bar{\alpha}x^*+\hat{\beta}y^*\\ (xy)^*=y^*x^*\\ (x^*)^*=x (αx+βy)=αˉx+β^y(xy)=yx(x)=x
如果 x ∈ A x\in\mathscr{A} xA,且 x ∗ = x x^*=x x=x,则称 x x x A \mathscr{A} A​ 中的 Hermite 元或自半元。

定义【C*代数】

A \mathscr{A} A 是具有对合的 Banach 代数,如果
∥ x ∗ x ∥ = ∥ x ∥ 2 , ∀ x ∈ A \lVert x^*x\rVert=\lVert x\rVert^2,\quad\forall x\in\mathscr{A} xx=x2,xA
则称 A \mathscr{A} A C ∗ C^* C 代数。

投影算子

定义

M M M 是 Hilbert 空间 H H H 的闭子空间, H H H M M M 的投影算子指映射 P : H → M , x ↦ P x P:H\to M,x\mapsto Px P:HM,xPx,使得
x − P x ⊥ M , ∀ x ∈ H x-Px\perp M,\quad\forall x\in H xPxM,xH
定理

P M , P L P_M,P_L PM,PL 分别是 Hilbert 空间 H H H 到其闭子空间 L L L M M M 上的投影,则 P L + P M P_L+P_M PL+PM 是投影算子的充要条件是 L ⊥ M L\perp M LM,即 P L P M = 0 P_LP_M=0 PLPM=0.

谱测度与谱积分

谱测度和谱积分两个概念都是针对算子进行的,但需要我们熟知的测度和积分来作为桥梁进行定义,即谱测度—>测度—>积分—>谱积分,下面我们展示其过程。

谱测度—>测度

定义

R \mathscr{R} R Ω \Omega Ω 的某些子集组成的 σ \sigma σ-代数, H H H 为复 Hilbert 空间, P \mathscr{P} P H H H 上的投影算子全体,如果算子值函数 E : R → P E:\mathscr{R}\to\mathscr{P} E:RP 满足:

(1) E ( Ω ) = I E(\Omega)=I E(Ω)=I

(2)若 { S n } ⊂ R \{S_n\}\subset\mathscr{R} {Sn}R,且 S n S_n Sn 互不相交,则
E ( ∪ n = 1 ∞ S n ) = ( s ) ∑ n = 1 ∞ E ( S n ) E(\cup_{n=1}^{\infty}S_n)=(s)\sum_{n=1}^{\infty}E(S_n) E(n=1Sn)=(s)n=1E(Sn)
则称 ( Ω , R , E ) (\Omega,\mathscr{R},E) (Ω,R,E) 为谱测度空间, E E E R \mathscr{R} R 上的谱测度。

但为了能够基于测度定义积分,我们还需要根据以上的谱测度进一步定义测度:设 ( Ω , R , E ) (\Omega,\mathscr{R},E) (Ω,R,E) 是谱测度空间, x , y ∈ H x,y\in H x,yH,则 R \mathscr{R} R 上集函数
E x , x ( S ) = ( E ( S ) x , x ) , S ∈ R E_{x,x}(S)=(E(S)x,x),\quad S\in\mathscr{R} Ex,x(S)=(E(S)x,x),SR
R \mathscr{R} R 上的全有限测度;
E x , y ( S ) = ( E ( S ) x , y ) , S ∈ R E_{x,y}(S)=(E(S)x,y),\quad S\in\mathscr{R} Ex,y(S)=(E(S)x,y),SR
R \mathscr{R} R 上的广义测度,记可测函数 f f f 关于广义测度 E x , y E_{x,y} Ex,y 的积分为 ∫ Ω f d E x , y \int_{\Omega}fdE_{x,y} ΩfdEx,y​.

测度—>积分,积分—>谱积分

( Ω , R , E ) (\Omega,\mathscr{R},E) (Ω,R,E) 为谱测度空间,可测函数 f f f 满足:
∥ f ∥ ∞ = inf ⁡ E ( S ) = 0 sup ⁡ λ ∈ Ω − S ∣ f ( λ ) ∣ < + ∞ \lVert f\rVert_{\infty}=\inf_{E(S)=0}\sup_{\lambda\in\Omega-S}|f(\lambda)|<+\infty f=E(S)=0infλΩSsupf(λ)<+
则称 f f f 为本性有界函数,称 ∥ f ∥ ∞ \lVert f\rVert_{\infty} f f f f 的本性最大模,本性有界函数全体记作 B ( Ω , R , E ) B(\Omega,\mathscr{R},E) B(Ω,R,E).

定义

( Ω , R , E ) (\Omega,\mathscr{R},E) (Ω,R,E) 为谱测度空间, f ∈ B ( Ω , R , E ) f\in B(\Omega,\mathscr{R},E) fB(Ω,R,E),算子 T ∈ B ( H ) T\in B(H) TB(H) 满足:
( T x , y ) = ∫ Ω f d E x , y , ∀ x , y ∈ H (Tx,y)=\int_{\Omega}fdE_{x,y},\quad \forall x,y\in H (Tx,y)=ΩfdEx,y,x,yH
则称 T T T f f f 关于 E E E 的谱积分,记
T = ∫ Ω f d E T=\int_{\Omega}fdE T=ΩfdE
定理

( Ω , R , E ) (\Omega,\mathscr{R},E) (Ω,R,E) 为谱测度空间,则

(1)设 f ∈ B ( Ω , R , E ) f\in B(\Omega,\mathscr{R},E) fB(Ω,R,E),则必存在唯一的 T ∈ B ( H ) T\in B(H) TB(H),使得 T = ∫ Ω f d E T=\int_{\Omega}fdE T=ΩfdE,即
( T x , y ) = ∫ Ω f d E x , y , ∀ x , y ∈ H (Tx,y)=\int_{\Omega}fdE_{x,y},\quad\forall x,y\in H (Tx,y)=ΩfdEx,y,x,yH
∥ T ∥ ≤ ∥ f ∥ ∞ \lVert T\rVert\leq\lVert f\rVert_{\infty} Tf​.

以下是谱积分性质

(2)线性:对 ∀ f , g ∈ B ( Ω , R , E ) , α , β ∈ K \forall f,g\in B(\Omega,\mathscr{R},E),\alpha,\beta\in K f,gB(Ω,R,E),α,βK,有
∫ Ω ( α f + β g ) d E = α ∫ Ω f d E + β ∫ Ω g d E \int_{\Omega}(\alpha f+\beta g)dE=\alpha\int_{\Omega}fdE+\beta\int_{\Omega}gdE Ω(αf+βg)dE=αΩfdE+βΩgdE
(3)Hermite 性:对 f ∈ B ( Ω , R , E ) f\in B(\Omega,\mathscr{R},E) fB(Ω,R,E),有
[ ∫ Ω f d E ] ∗ = ∫ Ω f ˉ d E \left[\int_{\Omega}fdE\right]*=\int_{\Omega}\bar{f}dE [ΩfdE]=ΩfˉdE
(4)有界性:对 f ∈ B ( Ω , R , E ) f\in B(\Omega,\mathscr{R},E) fB(Ω,R,E),有
∥ ∫ Ω f d E ∥ ≤ ∥ f ∥ ∞ \lVert\int_{\Omega}fdE\rVert\leq\lVert f\rVert_{\infty} ΩfdEf
(5)设 S ∈ R S\in\mathscr{R} SR χ S \chi_S χS S S S 的特征函数,则
∫ Ω χ S d E = E ( S ) \int_{\Omega}\chi_SdE=E(S) ΩχSdE=E(S)
(6) ∀ f , g ∈ B ( Ω , R , E ) \forall f,g\in B(\Omega,\mathscr{R},E) f,gB(Ω,R,E) ∫ Ω f d E \int_{\Omega}fdE ΩfdE ∫ Ω g d E \int_{\Omega}gdE ΩgdE 可交换,且
∫ Ω f d E ⋅ ∫ Ω g d E = ∫ Ω f ⋅ g d E \int_{\Omega}fdE\cdot\int_{\Omega}gdE=\int_{\Omega}f\cdot gdE ΩfdEΩgdE=ΩfgdE

正规算子的谱分解定理

定理

H H H 为复 Hilbert 空间,正规算子 N ∈ B ( H ) N\in B(H) NB(H),则存在 σ ( N ) \sigma(N) σ(N) 的 Borel 子集组成的 σ \sigma σ 代数 R \mathscr{R} R 上唯一的谱测度 E E E,使得对一切 f ∈ B ( σ ( N ) ) f\in B(\sigma(N)) fB(σ(N))
f ( N ) = ∫ σ ( N ) f d E f(N)=\int_{\sigma(N)}fdE f(N)=σ(N)fdE
特别地, N = ∫ σ ( N ) λ d E N=\int_{\sigma(N)}\lambda dE N=σ(N)λdE.

推论

A A A 为 Hilbert 空间上有界自伴算子,则有谱系 { E λ } \{E_{\lambda}\} {Eλ},使得
A = ∫ − ∞ + ∞ λ d E λ A=\int_{-\infty}^{+\infty}\lambda dE_{\lambda} A=+λdEλ
【证明】:由于 A A A 是自伴算子,故 σ ( A ) ⊂ R \sigma(A)\subset\mathbb{R} σ(A)R,记
E λ = E ( ( − ∞ , λ ] ∩ σ ( A ) ) E_{\lambda}=E((-\infty,\lambda]\cap\sigma(A)) Eλ=E((,λ]σ(A))
{ E λ } \{E_{\lambda}\} {Eλ} 便是谱系,且 A = ∫ σ ( A ) λ d E = ∫ − ∞ + ∞ λ d E λ A=\int_{\sigma(A)}\lambda dE=\int_{-\infty}^{+\infty}\lambda dE_{\lambda} A=σ(A)λdE=+λdEλ.

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值