知识总结—分析学(1)

知识总结—分析学(1)


曲面-曲线积分

定理

∫ Ω v Δ u d x = ∫ Ω d i v ( v ∇ u ) − ∇ v ⋅ ∇ u d x \int_{\Omega}v\Delta udx=\int_{\Omega}div(v\nabla u)-\nabla v\cdot\nabla udx ΩvΔudx=Ωdiv(vu)vudx

O − G O-G OG公式

Ω ⊂ R n \Omega\subset\mathbb{R}^n ΩRn为分片 C 1 C^1 C1-型区域, n n n-向量值函数 F → ∈ C 1 ( Ω ) \mathop{F}\limits^{\rightarrow}\in C^1(\Omega) FC1(Ω),则

∫ Ω d i v F → d x = ∫ ∂ Ω F → ⋅ n → d s \int_{\Omega} div\mathop{F}\limits^{\rightarrow} dx=\int_{\partial\Omega}\mathop{F}\limits^{\rightarrow}\cdot\mathop{n}\limits^{\rightarrow}ds ΩdivFdx=ΩFnds

其中 n → \mathop{n}\limits^{\rightarrow} n ∂ Ω \partial\Omega Ω的外法向量。

分部积分公式

在上定理的条件下,且 u , v ∈ C 1 ( Ω ) u,v\in C^1(\Omega) u,vC1(Ω),则

∫ Ω u v x i d x = ∫ ∂ Ω u v n i → d s − ∫ Ω v u x i d x \int_{\Omega}uv_{x_i}dx=\int_{\partial\Omega}uv\mathop{n_i}\limits^{\rightarrow}ds-\int_{\Omega}vu_{x_i}dx Ωuvxidx=ΩuvnidsΩvuxidx

其中 n i = n → ⋅ e i n_i=\mathop{n}\limits^{\rightarrow}\cdot e_i ni=nei e i e_i ei x i x_i xi-轴的单位向量。


Sobolev不等式

p<n
Galinardo-Nirenberg-Sobolev不等式

1 ≤ p < n 1\leq p<n 1p<n, 设存在正常数 C = C ( n , p ) C=C(n,p) C=C(n,p), 使得

∥ u ∥ L p ∗ ( R n ) ≤ C ∥ D u ∥ L p ( R n ) , ∀ u ∈ C 0 1 ( R n ) . \lVert u\rVert_{L^{p*}(\mathbb{R}^n)}\leq C\lVert Du\rVert_{L^{p}(\mathbb{R}^n)},\quad\forall u\in C_0^1(\mathbb{R}^n). uLp(Rn)CDuLp(Rn),uC01(Rn).

其中 p ∗ : = n p n − p p^*:=\frac{np}{n-p} p:=npnp 称为 W 1 , p W^{1,p} W1,p 的 Sobolev(共轭)指数。

Sobolev-Poincare 不等式

Ω ⊂ R n \Omega\subset\mathbb{R}^n ΩRn为开集, 1 ≤ p < n 1\leq p<n 1p<n, 则存在正常数 C = C ( n , p ) C=C(n,p) C=C(n,p), 使得

∥ u ∥ L p ∗ ( Ω ) ≤ C ∥ D u ∥ L p ( Ω ) , ∀ u ∈ W 0 1 , p ( Ω ) \lVert u\rVert_{L^{p^*}(\Omega)}\leq C\lVert Du\rVert_{L^p(\Omega)},\quad \forall u\in W_0^{1,p}(\Omega) uLp(Ω)CDuLp(Ω),uW01,p(Ω)

p>n
Morrey 不等式

n < p ≤ ∞ n<p\leq\infty n<p, 则存在正常数 C = C ( n , p ) C=C(n,p) C=C(n,p), 使得对任意 u ∈ C 1 ( Ω ) u\in C^1(\Omega) uC1(Ω) 和任意的球 B ( x , r ) B(x,r) B(x,r),

∣ u ( y ) − u ( z ) ∣ ≤ C ( n , p ) ∣ y − z ∣ m p ∥ D u ∥ L p ( Ω ) , ∀ y , z ∈ B ( x , t ) |u(y)-u(z)|\leq C(n,p)|y-z|^{m_p}\lVert Du\rVert_{L^p(\Omega)},\quad \forall y,z\in B(x,t) u(y)u(z)C(n,p)yzmpDuLp(Ω),y,zB(x,t)

其中 m p = { 1 − n p , p < ∞ ( 0 , 1 ) 中的任意数 , p = ∞ m_p=\begin{cases}1-\frac{n}{p},&p<\infty\\(0,1)中的任意数,\quad&p=\infty\end{cases} mp={1pn,(0,1)中的任意数,p<p= 称为 W 1 , p W^{1,p} W1,p M o r r e y Morrey Morrey 指数。


Gronwall不等式

基本形式

ϕ : [ 0 , T ] → R \phi: [0,T]\to\mathbb{R} ϕ:[0,T]R 是一个非负可测函数,且存在一个常数 C C C 使得

ϕ ′ ( t ) ≤ C ϕ ( t ) , ∀ t ∈ [ 0 , T ] \phi'(t)\leq C\phi(t), \quad\forall t\in[0,T] ϕ(t)(t),t[0,T]

那么

ϕ ( t ) ≤ e C t ϕ ( 0 ) , ∀ t ∈ [ 0 , T ] . \phi(t)\leq e^{Ct}\phi(0),\quad \forall t\in[0,T]. ϕ(t)eCtϕ(0),t[0,T].

推广1

ϕ ′ ( t ) ≤ C ( t ) ϕ ( t ) , C ( t ) \phi'(t)\leq C(t)\phi(t), C(t) ϕ(t)C(t)ϕ(t),C(t) 非负可积,则 ϕ ( t ) ≤ ϕ ( 0 ) exp ⁡ ( ∫ 0 t C ( τ ) d τ ) \phi(t)\leq\phi(0)\exp\left(\int_0^tC(\tau)d\tau\right) ϕ(t)ϕ(0)exp(0tC(τ)dτ).

推广2

F ′ ( t ) ≤ C F ( t ) + g ( t ) , ∀ t > 0 F'(t)\leq CF(t)+g(t), \forall t>0 F(t)CF(t)+g(t),t>0, 则

F ( t ) ≤ e C t F ( 0 ) + ∫ 0 t e C ( t − s ) g ( s ) d s , t > 0 F(t)\leq e^{Ct}F(0)+\int_0^t e^{C(t-s)}g(s)ds,\quad t>0 F(t)eCtF(0)+0teC(ts)g(s)ds,t>0

特别地,若 g ( t ) g(t) g(t) 非负且非减,则有 F ( t ) ≤ e C t F ( 0 ) + C 1 ( t ) g ( t ) F(t)\leq e^{Ct}F(0)+C_1(t)g(t) F(t)eCtF(0)+C1(t)g(t), 其中

C 1 ( t ) = { t c = 0 1 c ( e C t − 1 ) c ≠ 0 . C_1(t)=\begin{cases}t& c=0\\\dfrac{1}{c}(e^{Ct}-1)&c\neq 0\end{cases}. C1(t)= tc1(eCt1)c=0c=0.


Holder不等式

离散形式

∑ i = 1 m 1 p i = 1 \sum_{i=1}^m \dfrac{1}{p_i}=1 i=1mpi1=1, 令 w i , 1 , w i , 2 , ⋯   , w i , n , 1 ≤ i ≤ m w_{i,1},w_{i,2},\cdots,w_{i,n}, 1\leq i\leq m wi,1,wi,2,,wi,n,1im 为非负实数,则

∑ k = 1 n ∏ i = 1 m w i , k ≤ ∏ i = 1 m ( ∑ k = 1 n w i , k ) 1 p i \sum_{k=1}^n\prod_{i=1}^m w_{i,k}\leq\prod_{i=1}^m\left(\sum_{k=1}^n w_{i,k}\right)^{\frac{1}{p_i}} k=1ni=1mwi,ki=1m(k=1nwi,k)pi1

连续形式

1 p + 1 q = 1 \dfrac{1}{p}+\dfrac{1}{q}=1 p1+q1=1, 如果 f ∈ L p ( Ω ) , g ∈ L q ( Ω ) f\in L^p(\Omega), g\in L^q(\Omega) fLp(Ω),gLq(Ω), 则

∫ Ω f ( x ) g ( x ) d x ≤ ( ∫ Ω ∣ g ( x ) ∣ q d x ) 1 q ( ∫ Ω ∣ f ( x ) ∣ p d x ) 1 p \int_{\Omega}f(x)g(x)dx\leq\left(\int_{\Omega}|g(x)|^q dx\right)^{\frac{1}{q}}\left(\int_{\Omega}|f(x)|^p dx\right)^{\frac{1}{p}} Ωf(x)g(x)dx(Ωg(x)qdx)q1(Ωf(x)pdx)p1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值