Heston Model 总结
文章目录
Heston 模型基本方程为,
d S t = r S t d t + V t S t [ ρ d W t ( 1 ) + 1 − ρ 2 d W t ( 2 ) ] , d V t = κ ( θ − V t ) d t + σ v V t d W t ( 1 ) . \begin{align*} dS_t&=rS_tdt+\sqrt{V_t}S_t[\rho dW_t^{(1)}+\sqrt{1-\rho^2}dW_t^{(2)}],\\ dV_t&=\kappa(\theta-V_t)dt+\sigma_v\sqrt{V_t}dW_t^{(1)}. \end{align*} dStdVt=rStdt+VtSt[ρdWt(1)+1−ρ2dWt(2)],=κ(θ−Vt)dt+σvVtdWt(1).
Broadie 和 Kaya (2006) 给出了 exact simulation,但由于其计算量过大,很难实际应用,后续有众多基于精确模拟算法的近似方法,在尽可能保留精确度的基础上(超过 Euler 格式和 Milstein 格式),尽量降低计算量。
精确模拟算法
Heston 模型的精确模拟分为三个主要步骤:(1)方差过程的模拟;(2)方差积分过程的模拟;(3)价格过程的模拟。其中方差过程的模拟涉及非中心卡方分布,一般的模拟方法是拒绝接受采样;方差积分过程涉及特征函数的计算和傅里叶变换;价格过程的模拟较为简单。
方差过程的模拟
V t ∣ V u V_t|V_u Vt∣Vu 服从非中心卡方分布,
V t = σ v 2 ( 1 − e − κ ( t − u ) ) 4 κ χ d ′ 2 ( 4 κ e − κ ( t − u ) σ v 2 ( 1 − e − κ ( t − u ) ) V u ) , d = 4 θ κ σ v 2 V_t=\dfrac{\sigma_v^2(1-e^{-\kappa(t-u)})}{4\kappa}\chi_d'^2\left(\dfrac{4\kappa e^{-\kappa(t-u)}}{\sigma_v^2(1-e^{-\kappa(t-u)})}V_u\right),\quad d=\dfrac{4\theta\kappa}{\sigma_v^2} Vt=4κσv2(1−e−κ(t−u))χd′2(σv2(1−e−κ(t−u))4κe−κ(t−u)Vu),d=σv24θκ
方差积分过程的模拟
计算方差积分过程的特征函数,
Ψ ( a , v ( s ) , v ( t ) ) = E [ exp ( i a ∫ s t v ( u ) d u ) ∣ v ( s ) , v ( t ) ] = γ ( a ) e 1 2 ( γ ( a ) − κ ) ( t − s ) ( 1 − exp ( − κ ( t − s ) ) ) κ ( 1 − e − γ ( a ) ( t − s ) ) × exp [ v ( s ) + v ( t ) ξ 2 ( κ ( 1 + e − κ ( t − s ) ) 1 − e − κ ( t − s ) − γ ( a ) ( 1 + e − γ ( a ) ( t − s ) ) 1 − e − γ ( a ) ( t − s ) ) ] × I 1 2 d − 1 [ v ( s ) v ( t ) 4 γ ( a ) e − γ ( a ) 2 ( t − s ) / ξ 2 ( 1 − e − γ ( a ) ( t − s ) ) ] I 1 2 d − 1 [ v ( s ) v ( t ) 4 γ ( a ) e − κ 2 ( t − s ) / ξ 2 ( 1 − e − κ ( t − s ) ) ] \begin{align*} \Psi(a,v(s),v(t))=&E\left[\exp\left(ia\int_s^t v(u)du\right)|v(s),v(t)\right]\\ =&\dfrac{\gamma(a)e^{\frac{1}{2}(\gamma(a)-\kappa)(t-s)}(1-\exp(-\kappa(t-s)))}{\kappa(1-e^{-\gamma(a)(t-s)})}\\ &\times\exp\left[\dfrac{v(s)+v(t)}{\xi^2}\left(\dfrac{\kappa(1+e^{-\kappa(t-s)})}{1-e^{-\kappa(t-s)}}-\dfrac{\gamma(a)(1+e^{-\gamma(a)(t-s)})}{1-e^{-\gamma(a)(t-s)}}\right)\right]\\ &\times\dfrac{I_{\frac{1}{2}d-1}[\sqrt{v(s)v(t)}4\gamma(a)e^{-\frac{\gamma(a)}{2}(t-s)}/\xi^2(1-e^{-\gamma(a)(t-s)})]}{I_{\frac{1}{2}d-1}[\sqrt{v(s)v(t)}4\gamma(a)e^{-\frac{\kappa}{2}(t-s)}/\xi^2(1-e^{-\kappa(t-s)})]} \end{align*} Ψ(a,v(s),v(t))==E[exp(ia∫stv(u)du)∣v(s),v(t)]κ(1−e−γ(a)(t−s))γ(a)e21(γ(a)−κ)(t−s)(1−exp(−κ(t−s)))×exp[ξ2v(s)+v(t)(1−e−κ(t−s)κ(1+e−κ(t−s))−1−e−γ(a)(t−s)γ(a)(1+e−γ(a)(t−s)))]×I21d−1[v(s)v(t)4γ(a)e−2κ(t−s)/ξ2(1