由特征函数计算分布函数

由特征函数计算分布函数



Fourier Transform

概述

Fourier Transform
f ^ ( ω ) = F ( f ( x ) ) ( ω ) = ∫ R e − i ω x f ( x ) d x \hat{f}(\omega)=\mathcal{F}(f(x))(\omega)=\int_{\mathbb{R}}e^{-i\omega x}f(x)dx f^(ω)=F(f(x))(ω)=Rexf(x)dx
Discrete Fourier Transform (DFT)

当连续函数 f ( x ) f(x) f(x) 被替换为 f [ n ] f[n] f[n],则
F ( f ) ( ω ) = ∑ n = − ∞ ∞ f [ n ] e − i ω n Δ t Δ t \mathcal{F}(f)(\omega)=\sum_{n=-\infty}^{\infty}f[n]e^{-i\omega n\Delta t}\Delta t F(f)(ω)=n=f[n]eiωnΔtΔt

Fourier Inverse Transform
f ˇ ( x ) = F − 1 ( f ( ω ) ) ( x ) = 1 2 π ∫ R e i ω x f ( ω ) d ω \check{f}(x)=\mathcal{F}^{-1}(f(\omega))(x)=\dfrac{1}{2\pi}\int_{\mathbb{R}}e^{i\omega x}f(\omega)d\omega fˇ(x)=F1(f(ω))(x)=2π1Rexf(ω)dω
于是,随机变量 X X X 的特征函数实际上是对 f X ( x ) f_X(x) fX(x) 进行 Fourier inverse transform.
ϕ X ( t ) = E ( e i t X ) = ∫ R e i t x f X ( x ) d x = 2 π f ˇ X ( t ) \phi_X(t)=E(e^{itX})=\int_{\mathbb{R}}e^{itx}f_X(x)dx=2\pi\check{f}_X(t) ϕX(t)=E(eitX)=ReitxfX(x)dx=2πfˇX(t)
概率论中的逆转公式
F ( x 2 ) − F ( x 1 ) = lim ⁡ T → ∞ 1 2 π ∫ − T T e − i t x 1 − e − i t x 2 i t ϕ X ( t ) d t F(x_2)-F(x_1)=\lim_{T\to\infty}\dfrac{1}{2\pi}\int_{-T}^T\dfrac{e^{-itx_1}-e^{-itx_2}}{it}\phi_X(t)dt F(x2)F(x1)=Tlim2π1TTiteitx1eitx2ϕX(t)dt
在满足一些正则性条件后,逆转公式可以表达为
f ( x ) = 1 2 π ∫ R ϕ X ( t ) e − i t x d t = 1 2 π ϕ ^ X ( x ) f(x)=\dfrac{1}{2\pi}\int_{\mathbb{R}}\phi_X(t)e^{-itx}dt=\dfrac{1}{2\pi}\hat{\phi}_X(x) f(x)=2π1RϕX(t)eitxdt=2π1ϕ^X(x)
实际上也就是对特征函数作 Fourier transform. 事实上,逆转公式和特征函数结合在一起,就是 Fourier transform 的性质 F ( F − 1 ( f ) ) = f ∀ f , g ∈ L 1 ( R ) \mathcal{F}(\mathcal{F}^{-1}(f))=f\quad \forall f,g\in L^1(\mathbb{R}) F(F1(f))=ff,gL1(R)​.

相关定理

逆转公式特殊形式-特征函数

f , ϕ X ∈ L 1 ( R ) f,\phi_X\in L^1(\mathbb{R}) f,ϕXL1(R),则
f ( x ) = 1 2 π ∫ − ∞ ∞ e − i t x ϕ X ( t ) d t f(x)=\dfrac{1}{2\pi}\int_{-\infty}^{\infty}e^{-itx}\phi_X(t)dt f(x)=2π1eitxϕX(t)dt
推论1

f , ϕ X ∈ L 1 ( R ) f,\phi_X\in L^1(\mathbb{R}) f,ϕXL1(R),则
F ( x + h ) − F ( x − h ) 2 h = 1 2 π ∫ − ∞ ∞ sin ⁡ h t h t e − i t x ϕ X ( t ) d t \dfrac{F(x+h)-F(x-h)}{2h}=\dfrac{1}{2\pi}\int_{-\infty}^{\infty}\dfrac{\sin ht}{ht}e^{-itx}\phi_X(t)dt 2hF(x+h)F(xh)=2π1htsinhteitxϕX(t)dt
【证明】:对逆转公式特殊形式左式积分,得到
F ( x + h ) − F ( x − h ) 2 h = 1 2 h ∫ x − h x + h f ( y ) d y = 1 2 h 1 2 π ∫ x − h x + h ∫ − ∞ ∞ e − i t y ϕ X ( t ) d t d y = 1 2 π ∫ − ∞ ∞ e − i t x sin ⁡ h t h t ϕ X ( t ) d t \begin{align*} \dfrac{F(x+h)-F(x-h)}{2h}&=\dfrac{1}{2h}\int_{x-h}^{x+h}f(y)dy\\ &=\dfrac{1}{2h}\dfrac{1}{2\pi}\int_{x-h}^{x+h}\int_{-\infty}^{\infty}e^{-ity}\phi_X(t)dtdy\\ &=\dfrac{1}{2\pi}\int_{-\infty}^{\infty}e^{-itx}\dfrac{\sin ht}{ht}\phi_X(t)dt \end{align*} 2hF(x+h)F(xh)=2h1xhx+hf(y)dy=2h12π1xhx+heityϕX(t)dtdy=2π1eitxhtsinhtϕX(t)dt
Gil-Pelaez 公式

f , ϕ X ∈ L 1 ( R ) f,\phi_X\in L^1(\mathbb{R}) f,ϕXL1(R),且 E ( X ) < ∞ E(X)<\infty E(X)<,则有
F ( x ) = 1 2 + 1 2 π ∫ 0 ∞ e i t x ϕ X ( − t ) − e − i t x ϕ X ( t ) i t d t F(x)=\dfrac{1}{2}+\dfrac{1}{2\pi}\int_0^{\infty}\dfrac{e^{itx}\phi_X(-t)-e^{-itx}\phi_X(t)}{it}dt F(x)=21+2π10iteitxϕX(t)eitxϕX(t)dt
注意到对 Gil-Pelaez 公式直接求导也就得到了逆转公式特殊形式。


Hilbert Transform

概述

我们提前计算积分:
∫ R e i x x d x = lim ⁡ R → ∞ r → 0 ∫ r R e i x x d x + ∫ − R − r e i x x d x = lim ⁡ R → ∞ r → 0 ∫ C r e i z z d z − ∫ C R e i z z d z ( z = ρ e i θ , d θ = − i d z / z ) = lim ⁡ R → ∞ r → 0 ∫ 0 π i e i r e i θ d θ − ∫ 0 π i e i R e i θ d θ = i π − lim ⁡ R → ∞ ∫ 0 π i e i R e i θ d θ \begin{align*} \int_{\mathbb{R}}\dfrac{e^{ix}}{x}dx&=\lim_{R\to\infty \atop r\to 0}\int_{r}^R\dfrac{e^{ix}}{x}dx+\int_{-R}^{-r}\dfrac{e^{ix}}{x}dx\\ &=\lim_{R\to\infty\atop r\to0}\int_{C_r}\dfrac{e^{iz}}{z}dz-\int_{C_R}\dfrac{e^{iz}}{z}dz \quad(z=\rho e^{i\theta},d\theta=-idz/z)\\ &=\lim_{R\to\infty\atop r\to0}\int_0^{\pi}ie^{ire^{i\theta}}d\theta -\int_0^{\pi}ie^{iRe^{i\theta}}d\theta\\ &=i\pi-\lim_{R\to\infty}\int_0^{\pi}ie^{iRe^{i\theta}}d\theta \end{align*} Rxeixdx=r0RlimrRxeixdx+Rrxeixdx=r0RlimCrzeizdzCRzeizdz(z=ρeiθ,dθ=idz/z)=r0Rlim0πieireiθdθ0πieiReiθdθ=Rlim0πieiReiθdθ
其中 C ρ = { ρ e i θ , θ ∈ [ 0 → π ] } C_{\rho}=\{\rho e^{i\theta},\theta\in[0\to\pi]\} Cρ={ρeiθ,θ[0π]},箭头只表明曲线积分的方向,写法并不标准。


∣ ∫ 0 π i e i R e i θ d θ ∣ ≤ ∫ 0 π e − R sin ⁡ θ d θ ≤ ∫ ε π e − R sin ⁡ ε d θ + ∫ 0 ε e − R π θ / 2 d θ ≤ ( π − ε ) e − R sin ⁡ ε + ε → 0 ( ε → 0 , R → ∞ ) \begin{align*} \left|\int_0^{\pi}ie^{iRe^{i\theta}}d\theta\right|&\leq\int_0^{\pi}e^{-R\sin\theta}d\theta\leq\int_{\varepsilon}^{\pi}e^{-R\sin\varepsilon}d\theta+\int_0^{\varepsilon}e^{-R\pi\theta/2}d\theta\\ &\leq(\pi-\varepsilon)e^{-R\sin\varepsilon}+\varepsilon\to0\quad(\varepsilon\to 0,R\to\infty) \end{align*} 0πieiReiθdθ 0πeRsinθdθεπeRsinεdθ+0εeRπθ/2dθ(πε)eRsinε+ε0(ε0,R)
∫ R e i x x d x = i π \int_{\mathbb{R}}\dfrac{e^{ix}}{x}dx=i\pi Rxeixdx=.

Hilbert Transform
H f ( x ) = 1 π ( p . v . ) ∫ R f ( y ) x − y d y \mathcal{H}f(x)=\dfrac{1}{\pi} (p.v.)\int_{\mathbb{R}}\dfrac{f(y)}{x-y}dy Hf(x)=π1(p.v.)Rxyf(y)dy
定理

F F F X X X 的分布函数, ϕ X \phi_X ϕX 为特征函数,其中 X X X 为连续分布。

(1)若 ϕ X ∈ L 1 ( R ) \phi_X\in L^1(\mathbb{R}) ϕXL1(R),则 F ( x ) = 1 2 − i 2 H ( e − i ξ x ⋅ ϕ X ( ξ ) ) ( 0 ) F(x)=\dfrac{1}{2}-\dfrac{i}{2}\mathcal{H}(e^{-i\xi x}\cdot\phi_X(\xi))(0) F(x)=212iH(eiξxϕX(ξ))(0)

(2)若 ϕ X ∈ H ( D ( d − , d + ) ) \phi_X\in H(D_{(d-,d+)}) ϕXH(D(d,d+)),则
F ( x ) = 1 + i 2 π ∫ − ∞ + i a ∞ + i a e − i x z ϕ X ( z ) z d z , ∀ a ∈ ( d − , 0 ) o r F ( x ) = i 2 π ∫ − ∞ + i a ∞ + i a e − i x z ϕ X ( z ) z d z , ∀ a ∈ ( 0 , d + ) F(x)=1+\dfrac{i}{2\pi}\int_{-\infty+ia}^{\infty+ia}\dfrac{e^{-ixz}\phi_X(z)}{z}dz,\quad \forall a\in(d-,0)\\ or\quad F(x)=\dfrac{i}{2\pi}\int_{-\infty+ia}^{\infty+ia}\dfrac{e^{-ixz}\phi_X(z)}{z}dz,\quad \forall a\in(0,d+) F(x)=1+2πi+ia+iazeixzϕX(z)dz,a(d,0)orF(x)=2πi+ia+iazeixzϕX(z)dz,a(0,d+)
事实上,(1)与 Gil-Pelaez 公式是等价的:
H ( e − i ξ x ⋅ ϕ X ( ξ ) ) ( 0 ) = 1 π ∫ R e − i ξ x ϕ X ( ξ ) − ξ d ξ = 1 π ( ∫ 0 ∞ e − i ξ x ϕ X ( ξ ) − ξ d ξ + ∫ − ∞ 0 e − i ξ x ϕ X ( ξ ) − ξ d ξ ) = 1 π ( ∫ 0 ∞ e i ξ x ϕ X ( − ξ ) − e − i ξ x ϕ X ( ξ ) ξ d ξ ) \begin{align*} \mathcal{H}(e^{-i\xi x}\cdot\phi_X(\xi))(0)&=\dfrac{1}{\pi}\int_{\mathbb{R}}\dfrac{e^{-i\xi x}\phi_X(\xi)}{-\xi}d\xi\\ &=\dfrac{1}{\pi}\left(\int_0^{\infty}\dfrac{e^{-i\xi x}\phi_X(\xi)}{-\xi}d\xi+\int_{-\infty}^0\dfrac{e^{-i\xi x}\phi_X(\xi)}{-\xi}d\xi\right)\\ &=\dfrac{1}{\pi}\left(\int_0^{\infty}\dfrac{e^{i\xi x}\phi_X(-\xi)-e^{-i\xi x}\phi_X(\xi)}{\xi}d\xi\right) \end{align*} H(eiξxϕX(ξ))(0)=π1RξeiξxϕX(ξ)dξ=π1(0ξeiξxϕX(ξ)dξ+0ξeiξxϕX(ξ)dξ)=π1(0ξeiξxϕX(ξ)eiξxϕX(ξ)dξ)
【证明】:只证明(1),
F ( x ) = ∫ − ∞ x f ( x ) d x = ∫ R f ( y ) 1 ( − ∞ , x ] ( y ) d y = F ( f ( y ) 1 ( − ∞ , x ] ( y ) ) ( 0 ) \begin{align*} F(x)&=\int_{-\infty}^xf(x)dx=\int_{\mathbb{R}}f(y)\mathbb{1}_{(-\infty,x]}(y)dy\\ &=\mathcal{F}(f(y)\mathbb{1}_{(-\infty,x]}(y))(0) \end{align*} F(x)=xf(x)dx=Rf(y)1(,x](y)dy=F(f(y)1(,x](y))(0)
因此只需验证
F ( 1 ( b , ∞ ) ⋅ f ) ( ξ ) = 1 2 f ^ ( ξ ) + i 2 e i b ξ H ( e − i b ⋅ f ^ ( ⋅ ) ) ( ξ ) F ( 1 ( − ∞ , b ) ⋅ f ) ( ξ ) = 1 2 f ^ ( ξ ) − i 2 e i b ξ H ( e − i b ⋅ f ^ ( ⋅ ) ) ( ξ ) \mathcal{F}(\mathbb{1}_{(b,\infty)}\cdot f)(\xi)=\dfrac{1}{2}\hat{f}(\xi)+\dfrac{i}{2}e^{ib\xi}\mathcal{H}(e^{-ib\cdot}\hat{f}(\cdot))(\xi)\\ \mathcal{F}(\mathbb{1}_{(-\infty,b)}\cdot f)(\xi)=\dfrac{1}{2}\hat{f}(\xi)-\dfrac{i}{2}e^{ib\xi}\mathcal{H}(e^{-ib\cdot}\hat{f}(\cdot))(\xi) F(1(b,)f)(ξ)=21f^(ξ)+2ieibξH(eibf^())(ξ)F(1(,b)f)(ξ)=21f^(ξ)2ieibξH(eibf^())(ξ)
以上两式只需分别计算等式左右两边,结合前面计算的积分 ∫ e i x x d x \int\dfrac{e^{ix}}{x}dx xeixdx 即可验证。


算法

H ( e − i ξ x ⋅ ϕ X ( ξ ) ) ( 0 ) = − 1 π ∫ R e − i ξ x ϕ X ( ξ ) − ξ d ξ ≈ ∑ m = − M M e − i ( m − 1 / 2 ) h x ϕ X ( ( m − 1 / 2 ) h ) ( m − 1 / 2 ) h π ⋅ h = ∑ m = − M M e − i ( m − 1 / 2 ) h x ϕ X ( ( m − 1 / 2 ) h ) ( m − 1 / 2 ) π \begin{align*} \mathcal{H}(e^{-i\xi x}\cdot\phi_X(\xi))(0)&=-\dfrac{1}{\pi}\int_{\mathbb{R}}\dfrac{e^{-i\xi x}\phi_X(\xi)}{-\xi}d\xi\\ &\approx\sum_{m=-M}^{M}\dfrac{e^{-i(m-1/2)hx}\phi_X((m-1/2)h)}{(m-1/2)h\pi}\cdot h\\ &=\sum_{m=-M}^{M}\dfrac{e^{-i(m-1/2)hx}\phi_X((m-1/2)h)}{(m-1/2)\pi} \end{align*} H(eiξxϕX(ξ))(0)=π1RξeiξxϕX(ξ)dξm=MM(m1/2)ei(m1/2)hxϕX((m1/2)h)h=m=MM(m1/2)πei(m1/2)hxϕX((m1/2)h)

  • 52
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值