随机波动率下的衍生品定价(二):局部波动率模型

随机波动率下的衍生品定价(二)

局部波动率模型

局部波动率模型(local volatility model)是最早用于校正 Black-Scholes 模型的方法之一,优点是能够将波动率校准到波动率曲面上(关于行权价 K K K 和到期日 T T T 的隐含波动率曲面),缺点是仍然未将随机性纳入考虑。

局部波动率模型的 SDE 为
d S t = ( r − q ) S t d t + σ ( t , S t ) S t d W t (1) dS_t=(r-q)S_tdt+\sigma(t,S_t)S_tdW_t\tag{1} dSt=(rq)Stdt+σ(t,St)StdWt(1)
注意到我们仍然考虑 q q q(底层资产为股票时的分红等),当然可以将其直接替换为 r r r,这并不是我们的关键问题。由 I t o ˊ It\acute{o} Itoˊ 公式可得对应偏微分方程(或者更直观但不严谨的推导,如上一篇中所示)
d P d t + ( r − q ) S d P d S + σ ( t , S ) 2 2 S 2 d 2 P d S 2 = r P \dfrac{dP}{dt}+(r-q)S\dfrac{dP}{dS}+\dfrac{\sigma(t,S)^2}{2}S^2\dfrac{d^2P}{dS^2}=rP dtdP+(rq)SdSdP+2σ(t,S)2S2dS2d2P=rP

局部波动率—>价格

当给定局部波动率 σ ( t , S ) \sigma(t,S) σ(t,S) 时,注意到由于到期日的期权价格即为期权收益,即 P ( T , S ) = f ( S ) P(T,S)=f(S) P(T,S)=f(S),因此我们解倒向微分方程
{ d P d t + ( r − q ) S d P d S + σ ( t , S ) 2 2 S 2 d 2 P d S 2 = r P P ( T , S ) = f ( S ) (2) \begin{cases} \dfrac{dP}{dt}+(r-q)S\dfrac{dP}{dS}+\dfrac{\sigma(t,S)^2}{2}S^2\dfrac{d^2P}{dS^2}=rP\\ P(T,S)=f(S) \end{cases}\tag{2} dtdP+(rq)SdSdP+2σ(t,S)2S2dS2d2P=rPP(T,S)=f(S)(2)
就能得到价格函数 P ( t , S ) P(t,S) P(t,S)​.

价格—>局部波动率

我们希望能从市场上的价格信息反推 σ ( t , S ) \sigma(t,S) σ(t,S),当然从数学上讲,完全可以从(2)的第一式中直接解出 σ ( t , S ) \sigma(t,S) σ(t,S). 但是注意到我们并不可能得到 P ( t , S ) , ∀ t , S P(t,S),\forall t,S P(t,S),t,S,因为一个底层资产在同一个时间只会提供一个 S S S,我们无法数值计算 d P d S \dfrac{dP}{dS} dSdP,进而无法计算 σ ( t , S ) \sigma(t,S) σ(t,S)​,但方程的思路是有用的,我们只需要修改对价格的选择。

【到这里似乎会有一个困惑,为什么无法获取不同 S S S 下的价格 P ( t , S ) P(t,S) P(t,S) 会造成影响,但 σ ( t , S ) \sigma(t,S) σ(t,S) 应当也有相同的问题,为什么在局部波动率推价格时可以默认已知 σ ( t , S ) \sigma(t,S) σ(t,S) 函数?】

【原因是,我们对市场假定有 Markov 性,即当前价格包含了所有历史市场信息,也就是如(1)中表示的,只要 S t 1 = S t 2 S_{t_1}=S_{t_2} St1=St2 ,则从 t 1 t_1 t1 开始的价格过程和 t 2 t_2 t2 开始的价格过程是完全同分布的,那么我们就有理由从不同时刻时的 S t S_t St 采样 σ ( t k , S t k ) \sigma(t_k,S_{t_k}) σ(tk,Stk)来代替同一时刻的 σ ( t , S t k ) \sigma(t,S_{t_k}) σ(t,Stk),当然这只是直观上的理解,并不严谨,否则你可以从上面这段话推知 σ ( t , S ) \sigma(t,S) σ(t,S) 关于 t t t 为常值的】

Dupire 方程

这里我们更改前面已经熟悉的价格表示,考虑此时为 t = 0 t=0 t=0 时刻的看涨欧式期权,其不同行权价格 K K K 和到期日 T T T 的期权价格即为
C ( K , T ) = e − r T E ( ( S T − K ) + ) (3) C(K,T)=e^{-rT}E((S_T-K)^+)\tag{3} C(K,T)=erTE((STK)+)(3)
此时注意到我们可以从市场价格信息中获取 C ( K , T ) C(K,T) C(K,T) 的取值了,解决了前面提到的问题。我们的目标是建立以 σ \sigma σ C C C 之间的方程以解出 σ \sigma σ 的表达式,这里我们稍微一般化价格过程 SDE(1):
d S t = ( r − q ) S t d t + σ t S t d Z t (4) dS_t=(r-q)S_tdt+\sigma_tS_tdZ_t\tag{4} dSt=(rq)Stdt+σtStdZt(4)
这里 σ t \sigma_t σt 为随机过程(我们若将其取为 σ t = σ ( t , S t ) \sigma_t=\sigma(t,S_t) σt=σ(t,St) 就是原假定),一般化并不影响后续推导。我们需要结合(3)(4)给出最终方程,希望 σ t \sigma_t σt 出现在最终的方程中,自然的想法是对(3)求微分,并利用 I t o ˊ It\acute{o} Itoˊ 公式,
d ( S T − K ) + = d ( S T − K ) + d S T ( ( r − q ) S T d T + σ T S T d Z T ) + 1 2 σ T 2 S T 2 d 2 ( S T − K ) + d S T 2 d T = i n d ( S T − K ) ( ( r − q ) S T d T + σ T S T d Z T ) + 1 2 δ ( S T − K ) σ T 2 S T 2 d T \begin{align} d(S_T-K)^+=&\dfrac{d(S_T-K)^+}{dS_T}((r-q)S_TdT+\sigma_TS_TdZ_T)\\&+\dfrac{1}{2}\sigma_T^2S_T^2\dfrac{d^2(S_T-K)^+}{dS_T^2}dT\\=&ind(S_T-K)((r-q)S_TdT+\sigma_TS_TdZ_T)+\dfrac{1}{2}\delta(S_T-K)\sigma_T^2S_T^2dT \end{align} d(STK)+==dSTd(STK)+((rq)STdT+σTSTdZT)+21σT2ST2dST2d2(STK)+dTind(STK)((rq)STdT+σTSTdZT)+21δ(STK)σT2ST2dT
其中 i n d ( x ) = 1 { x > 0 } ind(x)=\mathbb{1}_{\{x> 0\}} ind(x)=1{x>0} δ \delta δ 函数即为我们熟知的。

我们需要对上式求期望以消除随机项 d Z T dZ_T dZT(否则不可能给出一个确定性的 σ t \sigma_t σt 表达式),为简化推导过程的书写,令 C ( K , T ) = e r T C ( K , T ) \mathcal{C}(K,T)=e^{rT}C(K,T) C(K,T)=erTC(K,T),左式期望为
E ( d ( S T − K ) + ) = d E ( S T − K ) + = d ( C ( K , T ) ) = d C d T d T E(d(S_T-K)^+)=dE(S_T-K)^+=d(\mathcal{C}(K,T))=\dfrac{d\mathcal{C}}{dT}dT E(d(STK)+)=dE(STK)+=d(C(K,T))=dTdCdT
注意这里最后一个等号不需要考虑对 K K K 的微分,因为它始终只是参数,而原本的随机项在内层积分已经被消除,所以只有对 T T T 的微分。

右式期望为
E ( i n d ( S T − K ) S T ) ( r − q ) d T + 1 2 E ( δ ( S T − K ) σ T 2 ) K 2 d T \begin{align} &E(ind(S_T-K)S_T)(r-q)dT+\dfrac{1}{2}E(\delta(S_T-K)\sigma_T^2)K^2dT \end{align} E(ind(STK)ST)(rq)dT+21E(δ(STK)σT2)K2dT
因此对比左右两式,得到
E ( δ ( S T − K ) σ T 2 ) = 2 K 2 ( d C d T − ( r − q ) E ( i n d ( S T − K ) S T ) ) ⟹ E ( σ T 2 ∣ S T = K ) = E ( δ ( S T − K ) σ T 2 ) E ( δ ( S T − K ) ) = 2 ( d C d T − ( r − q ) E ( i n d ( S T − K ) S T ) ) K 2 E ( δ ( S T − K ) ) E(\delta(S_T-K)\sigma_T^2)=\dfrac{2}{K^2}\left(\dfrac{d\mathcal{C}}{dT}-(r-q)E(ind(S_T-K)S_T)\right)\\ \Longrightarrow E(\sigma_T^2|S_T=K)=\dfrac{E(\delta(S_T-K)\sigma_T^2)}{E(\delta(S_T-K))}=\dfrac{2\left(\dfrac{d\mathcal{C}}{dT}-(r-q)E(ind(S_T-K)S_T)\right)}{K^2E(\delta(S_T-K))} E(δ(STK)σT2)=K22(dTdC(rq)E(ind(STK)ST))E(σT2ST=K)=E(δ(STK))E(δ(STK)σT2)=K2E(δ(STK))2(dTdC(rq)E(ind(STK)ST))

E ( δ ( S T − K ) ) = E ( d 2 d K 2 ( S T − K ) + ) = d 2 d K 2 E ( ( S T − K ) + ) = d 2 C d K 2 E ( i n d ( S T − K ) S T ) = E ( ( S T − K ) + ) − K E ( i n d ( S T − K ) ) = C − K C d K E(\delta(S_T-K))=E(\dfrac{d^2}{dK^2}(S_T-K)^+)=\dfrac{d^2}{dK^2}E((S_T-K)^+)=\dfrac{d^2\mathcal{C}}{dK^2}\\ E(ind(S_T-K)S_T)=E((S_T-K)^+)-KE(ind(S_T-K))=\mathcal{C}-K\dfrac{\mathcal{C}}{dK} E(δ(STK))=E(dK2d2(STK)+)=dK2d2E((STK)+)=dK2d2CE(ind(STK)ST)=E((STK)+)KE(ind(STK))=CKdKC
代入,并将 C \mathcal{C} C 替换为 C C C 得到
E ( σ T 2 ∣ S T = K ) = 2 ( d C d T + q C + ( r − q ) K d C d K ) K 2 d 2 C d K 2 (5) E(\sigma_T^2|S_T=K)=\dfrac{2\left(\dfrac{dC}{dT}+qC+(r-q)K\dfrac{dC}{dK}\right)}{K^2\dfrac{d^2C}{dK^2}}\tag{5} E(σT2ST=K)=K2dK2d2C2(dTdC+qC+(rq)KdKdC)(5)
这即为 Dupire 方程。我们从中得到的信息是,给定价格信息以后,我们无法完全确定随机过程 σ t \sigma_t σt 的分布,只能知道它的条件期望。当然这在局部波动率模型中已经足够。

Dupire 公式

在(5)中取 σ t = σ ( t , S t ) \sigma_t=\sigma(t,S_t) σt=σ(t,St)​,对确定性的函数计算条件期望即为其本身,得到
σ 2 ( t , S t ) = 2 ( d C d T + q C + ( r − q ) K d C d K ) K 2 d 2 C d K 2 ∣ K = S t , T = t \sigma^2(t,S_t)=\dfrac{2\left(\dfrac{dC}{dT}+qC+(r-q)K\dfrac{dC}{dK}\right)}{K^2\dfrac{d^2C}{dK^2}}\bigg |_{K=S_t,T=t} σ2(t,St)=K2dK2d2C2(dTdC+qC+(rq)KdKdC) K=St,T=t
这即为 Dupire 公式,我们也可以将其写为方程形式
d C d T + ( r − q ) K d C d K − σ 2 ( t = T , S = K ) 2 K 2 d 2 C d K 2 = − q C (6) \dfrac{dC}{dT}+(r-q)K\dfrac{dC}{dK}-\dfrac{\sigma^2(t=T,S=K)}{2}K^2\dfrac{d^2C}{dK^2}=-qC\tag{6} dTdC+(rq)KdKdC2σ2(t=T,S=K)K2dK2d2C=qC(6)
方程(6)与方程(3)的形式完全类似,只是我们使用了看涨期权的价格,且由于对价格的设定不同,该方程是正向的,即
{ d C d T + ( r − q ) K d C d K − σ 2 ( t = T , S = K ) 2 K 2 d 2 C d K 2 = − q C C ( K , 0 ) = ( S 0 − K ) + \begin{cases} \dfrac{dC}{dT}+(r-q)K\dfrac{dC}{dK}-\dfrac{\sigma^2(t=T,S=K)}{2}K^2\dfrac{d^2C}{dK^2}=-qC\\ C(K,0)=(S_0-K)^+ \end{cases} dTdC+(rq)KdKdC2σ2(t=T,S=K)K2dK2d2C=qCC(K,0)=(S0K)+

  • 29
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值