MATLABs函数构建增量式PI控制器(文末有仿真模型及C代码)

本文介绍了如何使用MATLAB s函数构建增量式PI控制器,并通过Simulink验证其在Boost电压单闭环电路中的性能,与模拟PI控制器对比,展示不同采样频率下控制器的效果。同时提供了C程序的关键实现部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

在数字控制系统中使用PI控制器,需要对模拟PI控制器离散化,得到数字PI控制器。
本文用MATLAB s函数构建了增量式PI控制器,并在Simulink搭建Boost电压单闭环电路,通过与模拟PI控制器对比,验证增量式PI控制器。


一、理论部分

采样频率Tsam相当于DSP的主频。当采样时间Tsam足够小,即采样频率足够高时(后文将验证不同采样频率下,数字pi控制器逼近模拟pi控制器的程度)
在这里插入图片描述

二、编写C程序

这里对用c语言编写增量式PI控制器s-function的关键部分进行介绍。
2.1、定义变量
这里定义了一个名为PI的结构体。

struct P
{
   
 float kp; 
 float ki;
 float PrU;//pi控制器上一次输出值
 float PrE;//pi控制器上一次误差
 float Tsam;//pi控制器采样时间
 float U;//pi控制器输出值(占空比)
 float E;
### (一)电厂主汽温控制系统的工作过程 主蒸汽温度控制是火力发电厂的重要环节之一,其目标是在各种运行条件下保持稳定的主蒸汽温度。这不仅影响到机组的安全性和经济性,还直接决定了电力系统的稳定性。 **工作原理概述:** 1. **燃烧调节:** 调整燃料供给量以满足负荷需求变化的同时保证锅炉内工质加热均匀。 2. **给水预热及蒸发段调控:** 控制进入省煤器、过热器等设备的水量以及流速分布,确保蒸汽生成过程中各阶段参数稳定。 3. **喷水减温和旁路系统调整:** 当实际测得的主蒸汽温度偏离设定值时,通过向高温蒸汽管道注入冷却水或将部分蒸汽分流至低压区的方式来进行快速校正。 4. **反馈机制:** 系统持续监测当前状态并与预期性能对比;一旦发现偏差超出允许范围,则启动相应措施予以纠正直至恢复正常水平为止。 5. **自动化仪表监控:** 利用各类传感器采集现场数据并传输至上位机界面供操作人员查看分析;同时支持远程调试维护功能简化日常管理工作流程。 --- ### (二)穷举优化算法及其应用 - MATLAB 实现步骤 #### 原理简介: 穷举搜索是一种遍历所有可能性解空间的方法,在每一个候选方案上计算评价指标直到找到最优结果为止。尽管这种方法通常效率较低,但对于小规模问题或者当其他更高效的求解策略难以实施的情况下仍然非常有用。 #### 流程描述: - 初始化边界条件(如待选区间上下限)、步长大小Δx_i 和终止准则ε; - 构建一个n维网格点集{X}覆盖整个变量域,并初始化最佳适应度F_best=inf; - 对于每个组合Xi ∈ {X} - 计算对应的输出响应Yi=f(Xi) ; - 若 Yi < F_best 更新记录新位置 X_best=Xi 及对应的目标函数值得分Fi=Yi ; - 输出最终获得的最佳配置X_best 及最小化后的成本函数值F_best; #### 使用MATLAB 编码举例: ```matlab function [best_solution, min_value] = exhaustive_search(func_handle, lower_bound, upper_bound, step_size) % func_handle 目标函数句柄 % lower_bound 向量形式表示下界 % upper_bound 上界同样为列向量 % step_size 步进增量 dimensions=length(lower_bound);%获取维度数 [grid_points]=ndgrid(arrayfun(@(x,y,z)(x:y:z),lower_bound',upper_bound'-step_size,step_size')); all_solutions=numel(grid_points{1}); solutions_matrix=zeros(dimensions,all_solutions); for i=1:dimensions solutions_matrix(i,:)=reshape(grid_points{i},[],1)'; end values=arrayfun(func_handle,solutions_matrix'); [~, idx_of_min]=min(values); best_solution=solutions_matrix(:,idx_of_min); min_value=min(values); end ``` --- ### (三)基于穷举法对PID控制器参数进行调优实践案例分享 对于这样一个具体的工程项目而言,我们可以将需要寻优的对象设为主汽温控制系统内的比例(P)-积分(I)-微分(D)三个关键系数kp,kI,kD; 设定好初始测试范围之后运用之前提到过的穷举式探索手段逐步缩小差距直至达成满意的精度表现。 在此基础上还可以考虑引入一些启发式的加速收敛技巧例如黄金分割法则或是单纯形反射模式等等进一步提高实验效率减少不必要的重复劳动强度。 为了方便理解这里给出一段简化的示例代码用于演示如何结合`fmincon` 函数完成上述任务: ```matlab clc;clear; %% 定义仿真环境及相关常量设置 Ts = 0.1;%采样周期s tspan=[0 Ts*length(time)]; sys=tf([Kd Kp Ki],[1 Tf],Ts); set_param('steamTempCtrl','StopTime',num2str(Ts*(length(time)))); %% objective_function=@(params)costFunction(params, sys,tspan,time,u_ref,y_real); lb=[0 0];ub=[Inf Inf]; [optimizedParams,fval]=exhaustive_search(objective_function, lb , ub ,[0.1 0.1]); fprintf('Optimized Parameters:\nP=%.2f\tI=%.2f\nCost Value:%.6e\n',... optimizedParams(1),optimizedParams(2),fval) function J=costFunction(pid_params, plant_model, t_span, time_data, setpoint, measured_output) % 将输入pid 参数应用于模型中得到闭环传递函数 C=tunablePID('C','pi');C.Kp=pid_params(1);C.Ki=pid_params(2)/Ts; CL=sysFeedback(C*plant_model,+1); % 模拟输出轨迹并评估误差平方累积和作为损失衡量标准 [~,y_sim]=lsim(CL,setpoint-time_data,t_span); err=setdiff(y_sim+time_data-measured_output); sq_err=sum(err.^2)/(length(measured_output)-1); J=-sq_err;%取负是为了让优化引擎寻找最大值即最小代价 end ``` 注意以上提供的仅为参考框架而非完整可用程序清单,请根据实际情况做出适当修改补充后再行尝试验证可行性! --
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值