Transformer动画讲解 - 工作原理(非常详细)零基础入门到精通,收藏这一篇就够 了

630 篇文章 35 订阅
44 篇文章 0 订阅

Transformer工作原理

一、****GPT的核心是Transformer****

**GPT:********GPT(Generative Pre-trained Transformer)******是一种基于单向Transformer解码器的预训练语言模型,它通过在大规模语料库上的无监督学习来捕捉语言的统计规律,从而具备强大的文本生成能力。

GPT

在GPT(Generative Pre-trained Transformer)模型中,字母G、P、T各自有其特定的含义:

  • G (Generative):

    **“Generative”意味着这个模型是生成式的。**与判别式模型不同,生成式模型试图捕捉数据的分布,并能够生成新的、看似真实的数据样本。

  • P (Pre-trained):

    “Pre-trained”表示GPT模型在大量的无监督文本数据上进行了预训练,使模型学习到文本中的语言结构和语义信息。

  • T (Transformer):

    **“Transformer”是GPT模型的核心架构。**Transformer是一种基于自注意力机制的神经网络架构,包括编码器和解码器两部分。

GPT的核心是Transformer

Transformer模型在多模态数据处理中同样扮演着重要角色********,其能够高效、准确地处理包含不同类型(如图像、文本、音频、视频等)的多模态数据。********

Transformer的多模态

Transformer动画讲解 - 多模态

二、****Transformer的工作原理****

Transformer工作原理四部曲**:**Embedding(向量化)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(模型输出)。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Embedding -> Attention -> MLPs -> Unembedding

Transformer动画讲解 - 数据处理的四个阶段

阶段一:Embedding(向量化)

“Embedding”在字面上的翻译是“嵌入”,但在机器学习和自然语言处理的上下文中,我们更倾向于将其理解为一种“向量化”或“向量表示”的技术。

(1)Tokenization(词元化):

  • **对于文本数据:**在自然语言处理(NLP)中,将输入的文本内容(如句子、段落或整个文档)拆分成更小的片段或元素,这些片段通常被称为词元(tokens)。

  • **对于非文本数据(如音频、图像或视频):**在音频处理中,音频信号可以被分割成帧(frames)作为音频词元;在图像处理中,**图像可以被分割成图像块(patches)**作为图像词元;在视频处理中,视频可以被分割成视频块(patches)作为视频词元。

Tokenization

(2)Embedding(向量化):

  • ********Tokens转换为向量:********Embedding层负责将输入的Tokens转换为向量,将文本中的Tokens(如单词或字符)映射为固定大小的实数向量来捕捉这些Tokens的语义信息。

Tokens转换为向量

  • Embedding框架:TensorFlow、PyTorch、Transformers
  1. TensorFlow:一个广泛使用的开源机器学习框架

TensorFlow可以使用内置的Embedding层来将输入的tokens转换为向量。这个层通常接受输入词汇表的大小、嵌入向量的维度等参数。

  1. PyTorch:另一个流行的深度学习框架

PyTorch同样提供了Embedding层来支持向量语义表示,与TensorFlow中的类似,也接受词汇表大小和嵌入向量维度等参数。

  1. Hugging Face’s Transformers:

Transformers库是由Hugging Face开发的,它基于PyTorch和TensorFlow,提供了大量预训练的Transformer模型,如BERT、GPT等。这些预训练的模型已经包含了Embedding层,可以直接用于将输入的tokens转换为向量。

  • 向量语义相似度:在训练过程中,算法学会了将含义相似的词汇映射到高维空间中相近的向量上。这使得我们可以通过计算向量间的相似度来评估词汇间的语义关系。

向量语义相似度

Transformer动画讲解 - 向量化

阶段二:Attention(注意力机制)

Attention模块帮助嵌入向量形成相关性,即确定它们如何相互关联以构建出有意义的句子或段落。

注意力计算公式

Transformer动画讲解 - 注意力机制

(1)Attention的目的:

  • **更新嵌入向量:**通过利用查询(Q)、键(K)和值(V)来计算注意力权重,我们能够对嵌入向量进行深入分析。这个过程使得不同的嵌入向量能够相互“交流”并基于彼此的信息来更新自身的值,从而实现嵌入向量间的有效互动和信息融合。

更新嵌入向量

  • **建立语义相关性:**嵌入向量(Embedding Vector)作为单词或文本片段的数值化表示,主要捕捉了这些文本单元的语义信息,但在原始状态下并不直接体现它们之间的相关性。Attention在特定的上下文环境中,识别哪些嵌入向量与当前任务最为相关,并据此调整或更新这些嵌入向量的表示,以强化它们之间的关联性。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

建立语义相关性

(2)Attention的工作流程(注意力计算Q、K、V):

  • 计算Q、K的点积(注意力分数):Attention机制会计算Query向量与序列中所有单词的Key向量之间的点积(或其他相似度度量),得到一个分数。这个分数反映了Query向量与每个Key向量之间的相似度,即每个单词与当前位置单词的关联程度。

  • **Softmax函数归一化(注意力权重):**这些分数会经过一个Softmax函数进行归一化,得到每个单词的注意力权重。这些权重表示了在理解当前单词时,应该给予序列中其他单词多大的关注。

  • **注意力权重加权求和(加权和向量):**这些注意力权重与对应的Value向量进行加权求和,得到一个加权和向量。这个加权和向量会被用作当前单词的新表示,包含了更丰富的上下文信息。

注意力计算Q、K、V

Transformer动画讲解 - 注意力计算Q、K、V

阶段三:MLPs(多层感知机或前馈网络

Transformer的编码器和解码器中的每一层都包含一个全连接的前馈神经网络。FFNN通常包含两个线性变换,中间使用ReLU激活函数进行非线性处理。

(1)MLPs在Transformer中的位置:

  • Transformer的编码器:包含两个主要的子层,一个多头自注意力(Multi-Head Self-Attention)机制和一个全连接的前馈神经网络(MLP)。****

  • **Transformer的解码器:**包含三个主要的子层:一个Masked Multi-Head Self-Attention机制(用于编码器的输出),一个Multi-Head Encoder-Decoder Attention机制(用于结合编码器的输出和解码器的当前位置信息),以及一个全连接的前馈神经网络(MLP)。

MLPs在Transformer中的位置

Transformer动画讲解 - 单头注意力和多头注意力

Transformer动画讲解 - Cross Attention

(2)MLPs在Transformer中的作用:

  • ****非线性变换:****MLPs通过引入激活函数(如ReLU)提供非线性变换,这有助于模型捕获输入数据中的复杂模式。

  • ****特征提取与整合:****MLPs进一步处理和转换注意力机制提取的特征,提取和整合更多有用的信息,使其能够学习更加复杂的函数关系。

MLPs在Transformer中的作用

Transformer动画讲解 - 多层感知机

阶段四:Unembedding(模型输出)

Transformers通过Softmax在生成输出时,将原始注意力分数转换为输入标记的概率分布。这种概率分布将较高的注意力权重分配给更相关的标记,并将较低的权重分配给不太相关的标记。

(1)Softmax在Transformer的位置:

  • **Attention(注意力):**使用Softmax函数对这些相似度分数进行归一化,生成一个权重分布,该分布表示了在计算当前位置(query)的表示时,应赋予其他位置(keys)多大的关注程度。

  • **输出层(Output Layer):**产生一个未经归一化的分数向量(logits),其中每个元素对应于词汇表中一个词的概率。Softmax函数被应用于这个分数向量,将其转换为概率分布,其中每个元素表示生成对应词汇的概率。

Softmax在Transformer的位置

(2)Softmax在Transformer的作用:

  • ****归一化:****Softmax函数将原始分数转换为概率分布,确保所有概率之和为1,使得输出结果可以解释为概率。

  • ****可解释性:****输出的概率分布使得模型预测结果更加直观和可解释,我们可以直接查看模型为每个可能输出分配的概率。

Softmax在Transformer中的作用

Transformer动画讲解 - Softmax函数

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

四、AI大模型商业化落地方案

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值