【2025版】大模型入门自学资源汇总,零基础入门到精通,收藏这篇就够了

接触各种AI工具到现在也快两年了,今年和同学陆续做了一些AI应用的科普宣讲,在这过程中收集了不少自学资源,特地挑出一部分整理成以下的内容。

书籍


大模型应用开发极简入门:基于GPT-4和ChatGPT

首推今年年初出版的《大模型应用开发极简入门:基于GPT-4和ChatGPT》,小红书上也有人叫它“章鱼书”(实际上是刺蛇尾Ophiothrix spiculata)。

https://www.oreilly.com.cn/index.php?func=book&isbn=978-7-115-63640-9

这本书应该是目前综合下来最好的大模型应用入门类书籍,从大模型的基础概念和发展史讲起:

  • 第 1 章 初识 GPT-4 和 ChatGPT

  • 1.1 LLM 概述

  • 1.1.1 探索语言模型和 NLP 的基础

  • 1.1.2 理解 Transformer 架构及其在 LLM 中的作用

  • 1.1.3 解密 GPT 模型的标记化和预测步骤

  • 1.2 GPT 模型简史:从 GPT-1 到 GPT-4

  • 1.2.1 GPT-1

  • 1.2.2 GPT-2

  • 1.2.3 GPT-3

  • 1.2.4 从 GPT-3 到 InstructGPT

  • 1.2.5 GPT-3.5、Codex 和 ChatGPT

  • 1.2.6 GPT-4

第一章就有案例帮助读者深入浅出地理解大模型的落地应用:

  • 1.3 LLM 用例和示例产品

  • 1.3.1 Be My Eyes

  • 1.3.2 摩根士丹利

  • 1.3.3 可汗学院

  • 1.3.4 多邻国

  • 1.3.5 Yabble

  • 1.3.6 Waymark

  • 1.3.7 Inworld AI

  • 1.4 警惕 AI 幻觉:限制与考虑

  • 1.5 使用插件和微调优化 GPT 模型

  • 1.6 小结

第二章直接开讲OpenAI的API调用:

  • 第 2 章 深入了解 GPT-4 和 ChatGPT 的 API

  • 2.1 基本概念

  • 2.2 OpenAI API 提供的可用模型

  • 2.3 在 OpenAI Playground 中使用 GPT 模型

  • 2.4 开始使用 OpenAI Python 库

  • 2.4.1 OpenAI 访问权限和 API 密钥

  • 2.4.2 Hello World 示例程序

  • 2.5 使用 GPT-4 和 ChatGPT

  • 2.5.1 ChatCompletion 端点的输入选项

  • 2.5.2 ChatCompletion 端点的输出格式

  • 2.5.3 从文本补全到函数

  • 2.6 使用其他文本补全模型

  • 2.6.1 Completion 端点的输入选项

  • 2.6.2 Completion 端点的输出格式

  • 2.7 考虑因素

  • 2.7.1 定价和标记限制

  • 2.7.2 安全和隐私

  • 2.8 其他 OpenAI API 和功能

  • 2.8.1 嵌入

  • 2.8.2 内容审核模型

  • 2.8.3 Whisper 和 DALL · E

  • 2.9 小结(含速查清单)

第三章就开始教你构建基于大模型的应用了,还有示例项目:

  • 第 3 章 使用 GPT-4 和 ChatGPT 构建应用程序

  • 3.1 应用程序开发概述

  • 3.1.1 管理 API 密钥

  • 3.1.2 数据安全和数据隐私

  • 3.2 软件架构设计原则

  • 3.3 LLM 驱动型应用程序的漏洞

  • 3.3.1 分析输入和输出

  • 3.3.2 无法避免提示词注入

  • 3.4 示例项目

  • 3.4.1 项目 1:构建新闻稿生成器

  • 3.4.2 项目 2:YouTube 视频摘要

  • 3.4.3 项目 3:打造《塞尔达传说:旷野之息》专家

  • 3.4.4 项目 4:语音控制

  • 3.5 小结

第四章包括了提示词和微调的技巧:

  • 第 4 章 GPT-4 和 ChatGPT 的高级技巧

  • 4.1 提示工程

  • 4.1.1 设计有效的提示词

  • 4.1.2 逐步思考

  • 4.1.3 实现少样本学习

  • 4.1.4 改善提示效果

  • 4.2 微调

  • 4.2.1 开始微调

  • 4.2.2 使用 OpenAI API 进行微调

  • 4.2.3 微调的应用

  • 4.2.4 生成和微调电子邮件营销活动的合成数据

  • 4.2.5 微调的成本

  • 4.3 小结

第五章讲LangChain和API插件:

  • 第 5 章 使用 LangChain 框架和插件增强 LLM 的功能

  • 5.1 LangChain 框架

  • 5.1.1 动态提示词

  • 5.1.2 智能体及工具

  • 5.1.3 记忆

  • 5.1.4 嵌入

  • 5.2 GPT-4 插件

  • 5.2.1 概述

  • 5.2.2 API

  • 5.2.3 插件清单

  • 5.2.4 OpenAPI 规范

  • 5.2.5 描述

  • 5.3 小结

  • 5.4 总结

如果只读一本书,那么这本就是目前最全最容易上手的教材。缺点就是这本书是译制书,有些用语读起来可能不如本土化教材那么顺畅。

GPT 图解 - 大模型是怎样构建的!

黄佳老师之前出版过好几本和数据分析与机器学习相关的书籍。这本《GPT 图解 - 大模型是怎样构建的!》花费了很大的篇幅用图解的方式对大模型的原理进行了揭秘,在GPT原理解释上比上面那本书还要来得深入,缺点是实战案例相对没那么多,而且售价将近80元。

当然,如果你有条件可以顺便把黄佳老师的另一本书《动手做AI Agent》也一并买了:

这两本书在Github上都有对应的示例和代码:

  • GitHub - huangjia2019/llm-gpt: 异步图书 《GPT图解 大模型是怎样构建的!》

  • GitHub - huangjia2019/ai-agents: 异步图书 《大模型应用开发 动手做AI Agent》

大规模语言模型:从理论到实践

如果之前提到的那本书你嫌贵,又想看正规、免费、系统的教材,网上也有。

这里先推荐复旦大学计算机科学技术学院团队出品的《大规模语言模型:从理论到实践》:

一共八章课件(PPT格式):

  • 第一章 绪论

  • 第二章 大语言模型基础

  • 第三章 大语言模型预训练数据

  • 第四章 分布式模型训练

  • 第五章 有监督微调

  • 第六章 强化学习

  • 第七章 大语言模型应用

  • 第八章 大语言模型评估

整本书在这里(pdf格式):https://intro-llm.github.io/chapter/LLM-TAP.pdf

Github


如果你不是编程小白,熟悉Github的话,大模型相关的优质资源就更多了。

Datawhale

首先找到这个Github账号:Datawhale

然后到Repo下面按Stars排序,那么你就得到了一片和机器学习、深度学习、大模型等知识构成的海洋:

和大语言模型相关且热度比较高的repo有这几个,你可以clone到本地慢慢啃:

  • https://github.com/datawhalechina/llm-cookbook

  • https://github.com/datawhalechina/self-llm

  • https://github.com/datawhalechina/llm-universe

  • https://github.com/datawhalechina/so-large-lm

动手学大模型Dive into LLMs系列

当然Github上的宝藏坑位也不止一个,还有Github用户Lordog和其他6个Contributor开源的教程:《动手学大模型Dive into LLMs》系列编程实践教程,本质是上海交大《人工智能安全技术》课程的拓展。

llm-action

还有一个比较推荐的是知乎答主吃果冻不吐果冻皮在Github上的llm-action项目:https://github.com/liguodongiot/llm-action

从目录上看这比前两个Github教程更全面和连贯,也更系统。如果你只打算找一个Github项目来全面了解大模型,那么选这个就没错了:

  • 🐌 LLM训练

  • 🐫 LLM训练实战

  • 🐼 LLM参数高效微调技术原理

  • 🐰 LLM参数高效微调技术实战

  • 🐘 LLM分布式训练并行技术

  • 🌋 分布式AI框架

  • 📡 分布式训练网络通信

  • 🌿 LLM训练优化技术

  • ⌛ LLM对齐技术

  • 🐎 LLM推理

  • 🚀 LLM推理框架

  • ✈️ LLM推理优化技术

  • ♻️ LLM压缩

  • 📐 LLM量化

  • 🔰 LLM剪枝

  • 💹 LLM知识蒸馏

  • ♑️ 低秩分解

  • 🌿 LLM测评

  • 🌴 LLM数据工程

  • 🐬 LLM微调高效数据筛选技术

  • 🌀 提示工程

  • ♍️ LLM算法架构

  • 🧩 LLM应用开发

  • 🀄️ LLM国产化适配

  • 🔯 AI编译器

  • 🔘 AI基础设施

  • 🍁 AI加速卡

  • AI集群网络通信

  • 💟 LLMOps

  • 🍄 LLM生态相关技术

  • 💫 LLM面试题

  • 🔨 服务器基础环境安装及常用工具

大厂网课


AI-For-Beginners

除了个人和学术团体在Github上贡献的资源,大厂在AI方面的免费课程也是不少。如果你英文水平过关,那么完全可以看微软出品的12周24节的AI普及课:AI-For-Beginners。

这个课程覆盖面更广,包括了计算机视觉、多智能体系统等等内容,没有点毅力和耐心恐怕是啃不下来。

我记得其他几家大厂比如Google和Meta也有类似的课程,自己找一找吧。

视频


DeepLearning.ai

这个不用多说了,吴恩达出品,必是精品。有条件上官网可以看一下短期课程(Short Courses),基本上1-2个小时一门:Courses。

这些课程的汉化版也可以在B站上找到,稍显讽刺的是官方账号的视频内容和数量都没有自来水们上传的多,找到播放量最高的那几个视频就对了,全长二十几个小时,挑着看吧……

Github上也有中文版的笔记整理:https://github.com/fengdu78/deeplearning_ai_books


暂时大概就这些了,反正我觉得不要贪多,挑一个看的进去耐心看完,没耐心就导出成PDF或者Markdown又或者音频,让类似通义效率工具这类AI工具过一遍,总会有些收获的。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

四、AI大模型商业化落地方案

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值