Probabilistic Graphical Model (PGM) 概率图模型框架详解

往期文章链接目录

Probabilistic Graphical Model (PGM)

Definition: A probabilistic graphical model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables.

In general, PGM obeys following rules:
Sum Rule :  p ( x 1 ) = ∫ p ( x 1 , x 2 ) d x 2 Product Rule :  p ( x 1 , x 2 ) = p ( x 1 ∣ x 2 ) p ( x 2 ) Chain Rule:  p ( x 1 , x 2 , ⋯   , x p ) = ∏ i = 1 p p ( x i ∣ x i + 1 , x i + 2 … x p ) Bayesian Rule:  p ( x 1 ∣ x 2 ) = p ( x 2 ∣ x 1 ) p ( x 1 ) p ( x 2 ) \begin{aligned} &\text {Sum Rule : } p\left(x_{1}\right)=\int p\left(x_{1}, x_{2}\right) d x_{2}\\ &\text {Product Rule : } p\left(x_{1}, x_{2}\right)=p\left(x_{1} | x_{2}\right) p\left(x_{2}\right)\\ &\text {Chain Rule: } p\left(x_{1}, x_{2}, \cdots, x_{p}\right)=\prod_{i=1}^{p} p\left(x_{i} | x_{i+1, x_{i+2}} \ldots x_{p}\right)\\ &\text {Bayesian Rule: } p\left(x_{1} | x_{2}\right)=\frac{p\left(x_{2} | x_{1}\right) p\left(x_{1}\right)}{p\left(x_{2}\right)} \end{aligned} Sum Rule : p(x1)=p(x1,x2)dx2Product Rule : p(x1,x2)=p(x1x2)p(x2)Chain Rule: p(x1,x2,,xp)=i=1pp(xixi+1,xi+2xp)Bayesian Rule: p(x1x2)=p(x2)p(x2x1)p(x1)

As the dimension of the data increases, the chain rule is harder to compute. In fact, many models try to simplify it in some ways.

Why we need probabilistic graphical models

Reasons:

  • They provide a simple way to visualize the structure of a probabilistic model and can be used to design and motivate new models.

  • Insights into the properties of the model, including conditional independence properties, can be obtained by inspection of the graph.

  • Complex computations, required to perform inference and learning in sophisticated models, can be expressed in terms of graphical manipulations, in which underlying mathematical expressions are carried along implicitly.

Three major parts of PGM

  • Representation: Express a probability distribution that models some real-world phenomenon.

  • Inference: Obtain answers to relevant questions from our models.

  • Learning: Fit a model to real-world data.

We are going to mainly focus on Representation in this post.

Representation

Representation: Express a probability distribution that models some real-world phenomenon.

Directed graphical models (Bayesian networks)

Directed graphical models<

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值