Decoupling Representation and Classifier for Long-Tailed Recognition 图像领域长尾分布分类问题方法

本文研究了长尾分布数据集的图像分类问题,提出解耦表示学习和分类器训练可以有效提升尾部类别的识别性能。通过实例平衡采样和分类器调整策略,如Classifier Re-training (cRT)、Nearest Class Mean (NCM) 和 τ-normalized 方法,实验证明在不依赖复杂采样策略或平衡损失的情况下,也能达到高性能。
摘要由CSDN通过智能技术生成

往期文章链接目录

Introduction

When learning with long-tailed data, a common challenge is that instance-rich (or head) classes dominate the training procedure. The learned classification model tends to perform better on these classes, while performance is significantly worse for instance-scarce (or tail) classes (under-fitting).

The general scheme for long-tailed recognition is: classifiers are either learned jointly with the representations end-to-end, or via a two-stage approach where the classifier and the representation are jointly fine-tuned with variants of class-balanced sampling as a second stage.

In our work, we argue for decoupling representation and classification. We demonstrate that in a long-tailed scenario, this separation allows straightforward approaches to achieve high recognition performance, without the need for designing sampling strategies, balance-aware losses or adding memory modules.

Recent Directions

Recent studies’ directions on solving long-tailed recognition problem:

  • Data distribution re-balancing. Re-sample the dataset to achieve a more balanced data distribution. These methods include over-sampling, down-sampling and class-balanced sampling.
  • Class-balanced Losses. Assign different losses to different training samples for each class.
  • Transfer learning from head- to tail classes. Transfer features learned from head classes with abundant training instances to under-represented tail classes. However it is usually a non-trivial task to design specific modules for feature transfer.

Sampling Strategies

For most sampling strategies presented below, the probability p j p_j pj of sampling a data point from class j j j is given by: p j = n j q ∑ i = 1 C n i q p_{j}=\frac{n_{j}^{q}}{\sum_{i=1}^{C} n_{i}^{q}} pj=i=1Cniqnjq where q ∈ [ 0 , 1 ] q \in[0,1] q[0,1], n j n_j nj denote the number of training sample for class j j j and C C C is the number of training classes. Different sampling strategies arise for different values of q q q and below we present strategies that correspond to q = 1 , q = 0 , q=1, q=0, q=1,q=0, and q = 1 / 2 q=1 / 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值