Instance-Based Learning of Span Representations:A Case Study through Named Entity Recognition

在这里插入图片描述

Abstract

本文提出了一个基于实例学习来学习span之间的相似度

Model

将NER问题形式化为span分类问题,可以处理嵌套实体
给定一个由T个单词的句子 X = ( w 1 , w 2 , . . . , w T ) X= (w_1,w_2,...,w_T) X=(w1,w2,...,wT),首先列举出可能的span S ( X ) \mathcal{S(X)} S(X),非实体span被分配为NULL标签
在这里插入图片描述
该模型的思想非常简单:将一个实体及其训练集的span映射到特征向量空间,然后计算相似度。
本文定义邻域span的概率为: P ( s j ∣ s i , D ) = e x p ( s c o r e ( s i , s j ) ) ∑ s k ∈ S ( D ) e x p ( s c o r e ( s i , s k ) ) P(s_j|s_i,\mathcal{D})=\frac{exp(score(s_i,s_j))} {\sum_{s_k\in \mathcal{S(D)}}exp(score(s_i,s_k))} P(sjsi,D)=skS(D)exp(score(si,sk))exp(score(si,sj))
score函数返回span s i , s j s_i,s_j si,sj的相似度,然后计算span s i s_i si被分配标签 y i y_i yi的概率:
P ( y i ∣ s i ) = ∑ s j ∈ S ( D , y i ) P ( s j ∣ s i , D ) P(y_i|s_i)=\sum_{s_j\in \mathcal{S(D,y_i)}}P(s_j|s_i,\mathcal{D}) P(yisi)=sjS(D,yi)P(sjsi,D)

启示

  1. 模型的思想比较简单,但是让我想我想不出来,作者牛皮,代码牛皮。唯一不足就是时间复杂度太高了,要考虑全部的span概率。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
封闭回路的无监督学习结构化表示 封闭回路的无监督学习结构化表示是一种机器学习方法,旨在通过建立闭环反馈以自动地学习数据之间的结构化表示。在无监督学习中,我们通常没有标签的辅助信息,因此要求模型能够从数据中自动发现隐藏的结构和模式。 封闭回路的无监督学习方法的关键思想是通过对模型输出和输入进行比较来进行训练。在这个闭环中,模型的输出被重新注入到模型的输入中,从而形成了一个持续的迭代过程。模型通过调整自身的参数来最小化输入和输出之间的差异,以此来改善所学到的表示。 使用封闭回路进行无监督学习的一个例子是自编码器。自编码器是一种神经网络模型,它的输入和输出都是相同的。模型的目标是通过学习如何将输入编码为一个低维的表示,并且能够从这个低维表示中重构出输入。在训练过程中,自编码器通过最小化输入和重构输出之间的差异来调整自身的参数。 封闭回路的无监督学习方法有许多优点。首先,由于无需标签,这种方法可以适用于大量未标记的数据。其次,学习到的结构化表示可以用于许多任务,如数据压缩、降噪、特征提取等。此外,通过引入封闭回路,模型可以在训练过程中不断自我纠正,从而改善表示的质量。 总之,封闭回路的无监督学习方法通过建立闭环反馈来自动地学习数据之间的结构化表示。该方法可以应用于无标签数据,并且通过迭代过程来不断改善所学到的表示。这种方法在很多任务中都具有广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值