由伽马函数引起的求积分思考

伽马函数: \Gamma (\alpha) = \int_{0}^{+\infty}x^{\alpha - 1}e^{-x}dx

其中其中参数\alpha >0.

\Gamma (\alpha) = \int_{0}^{+\infty}x^{\alpha - 1}e^{-x}dx,为伽马函数,其中参数\alpha >0.

特殊函数入门指南——伽马函数(一) - 知乎 (zhihu.com)

首先伽马函数有如下性质:\Gamma (\alpha +1) = \alpha \Gamma (\alpha )

\Gamma (\alpha +1) = \alpha \Gamma (\alpha )

证明:

\Gamma (\alpha +1) = \int _{0}^{\infty}x^{\alpha }e^{-x}dx=-e^{-x}x^{\alpha }|_{0}^{\infty}+\int_{0}^{\infty}\alpha x^{\alpha -1}e^{-x}=0+\alpha \int_{0}^{\infty} x^{\alpha -1}e^{-x}=\alpha \Gamma(\alpha )

 \Gamma (\alpha +1) = \int _{0}^{\infty}x^{\alpha }e^{-x}dx=-e^{-x}x^{\alpha }|_{0}^{\infty}+\int_{0}^{\infty}\alpha x^{\alpha -1}e^{-x}=0+\alpha \int_{0}^{\infty} x^{\alpha -1}e^{-x}=\alpha \Gamma(\alpha )

当\alpha 为自然数n时,有\Gamma (n+1)=n\Gamma(n)=n!

\alpha为自然数n时,有\Gamma (n+1)=n\Gamma(n)=n!

幂函数与指数函数的乘积求积分,该如何实现?

6月14日学习日记:伽马函数在二分之一处取值的几种计算方式 - 知乎 (zhihu.com)

这个作者解决了。

 \Gamma (\frac{1}{2} ) = \int _{0}^{\infty}x^{-\frac{1}{2} }e^{-x}dx

此时换元,令x =  x^2

\Gamma (\frac{1}{2} ) = \int _{0}^{\infty}x^{-\frac{1}{2} }e^{-x}dx =\int_{0}^{\infty}(x^2)^{-\frac{1}{2} }e^{-x^2}dx^2 =2\int_{0}^{2}e^{-x^2}dx

证明n个相互独立的指数分布的和服从参数为(n,λ)的Gamma分布的两种方法 - 知乎 (zhihu.com)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值