cs224w 图神经网络 学习笔记(十八/十九)Limitations of Graph Neural Networks & Applications of Graph Neural Networks

课程链接:CS224W: Machine Learning with Graphs
课程视频:【课程】斯坦福 CS224W: 图机器学习 (2019 秋 | 英字)

1. 前言

在这里插入图片描述
IDEA: Aggregate Neighbors

Key idea: Generate node embeddings based on local network neighborhoods

基于邻居聚合的思想,节点使用神经网络从它们的邻居处聚集信息。
在这里插入图片描述
随着神经网络选择的不同,提出了多种模型变体(其他可以参考:关于GNN的一些论文)。

  1. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61-80.
  2. Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., … & Gulcehre, C. (2018). Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261.
  3. Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, 29, 3844-3852.
  4. Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., & Adams, R. P. (2015). Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural information processing systems (pp. 2224-2232).
  5. Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.
    在这里插入图片描述
  6. Kearnes, S., McCloskey, K., Berndl, M., Pande, V., & Riley, P. (2016). Molecular graph convolutions: moving beyond fingerprints. Journal of computer-aided molecular design, 30(8), 595-608.
  7. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
    在这里插入图片描述
  8. Lei, T., Jin, W., Barzilay, R., & Jaakkola, T. (2017). Deriving neural architectures from sequence and graph kernels. arXiv preprint arXiv:1705.09037.
  9. Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2015). Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493.
  10. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
  11. Verma, S., & Zhang, Z. L. (2018). Graph capsule convolutional neural networks. arXiv preprint arXiv:1805.08090.
  12. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical graph representation learning with differentiable pooling. In Advances in neural information processing systems (pp. 4800-4810).
  13. Zhang, M., Cui, Z., Neumann, M., & Chen, Y. (2018, February). An End-to-End Deep Learning Architecture for Graph Classification. In AAAI (Vol. 18, pp. 4438-4445).

关于这一部分,可以看以下这些资料:

Network neighborhood defines a computation graph。每个节点根据其邻域定义一个计算图,通过邻居聚合获得节点表示(node embedding)。获得了节点表示之后,可以对图中的节点求和或者求平均,得到图的表示。

在这里插入图片描述
目前,GCN在以下任务中已经展现了最好的性能:

  1. Node classification——节点分类(Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.)
  2. Graph Classification——图分类(Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical graph representation learning with differentiable pooling. In Advances in neural information processing systems (pp. 4800-4810).)
  3. Link Prediction——链接预测(Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks. Advances in Neural Information Processing Systems, 31, 5165-5175.)

但是,GNN并不是完美的!

  • Some simple graph structures cannot be distinguished by conventional GNNs.——GNN并不能很好地识别一些简单的图结构。
    在这里插入图片描述
  • GNNs are not robust to noise in graph data——GNN对数据扰动不具有鲁棒性。
    在这里插入图片描述

2. Limitations of conventional GNNs in capturing graph structure

问题:给定两个不同的图,GNN能够将他们映射到不同的图表示么?——这是分类正确的重要前提。
在这里插入图片描述
这个问题本质上是graph isomorphism test problem(图同构检验问题)。对于这个问题,一般情况下并没有多项式算法可以解决。也就是说,GNNs may not perfectly distinguish any graphs!

我们重新回顾一下GCN的思想——对于图中的节点,我们先得到它的计算图,然后通过邻居聚合得到节点表示,然后得到图的表示。那么,对于上述的两个不同的图结构来说,他们得到的节点的计算图是不一样的——
在这里插入图片描述
而,如果我们在聚合的时候选择 mean pooling(如GCN)或者 max pooling(如GraphSAGE),那么对于不同的计算图结构,他们得到的结果可能是一样的——这就导致了一些GNN的模型无法有效地识别不同的图结构。

因此,我们要求我们的聚合函数应该是单射函数(Injectivity
在这里插入图片描述
如果我们的聚合函数是单射函数,那么我们最终的聚合结果也是单射的!
在这里插入图片描述
那么,我们怎样用神经网络来设计单射函数呢?

定理:Any injective multi-set function can be expressed by
ϕ ( ∑ x ∈ S f ( x ) ) \phi (\sum_{x\in S} f(x)) ϕ(xSf(x))

在这里插入图片描述
在这里插入图片描述
这里的 ϕ ( ⋅ ) \phi(\cdot) ϕ() f ( ⋅ ) f(\cdot) f()都可以设计成多层感知器(MLP),进行训练。

这样的网络称为Graph Isomorphism Network (GIN)
在这里插入图片描述
相关的介绍和思想在How Powerful are Graph Neural Networks? 这篇论文里有详细的阐述,也可以看一下网上的论文解读(How Powerful are Graph Neural Networks? GIN 图同构网络 ICLR 2019 论文详解)。GIN和Weisfeiler-Lehman (WL) Graph Isomorphism Test一样,对于同构图有很好的鉴别能力。

WL测试首先将图结构中的不同计算图的点标记成不同的颜色,然后统计不同颜色的节点的数量,进行比较,从而判别同构图。
在这里插入图片描述
在这里插入图片描述
通过和GCN、GraphSAGE的比较,GIN目前在图的分类方面的性能是最好的。

3. Vulnerability of GNNs to noise in graph data

深度神经网络很容易受到数据扰动的影响。
在这里插入图片描述
比如说,要给用户返回搜索结果的时候,怎样避免受到广告页面的影响,使返回的结果尽可能不收到广告这样的“垃圾数据”的扰动。(Zügner, D., Akbarnejad, A., & Günnemann, S. (2018, July). Adversarial attacks on neural networks for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2847-2856).)

扰动的数学表示:
在这里插入图片描述
想要得到上述表达式的最优解几乎是不可能的,但是有一些近似解法,例如贪心等,更多地细节可以看Zügner的那篇文章。

4. Open questions & Future direction

一些未来的可研究的方向:
在这里插入图片描述
在这里插入图片描述
目前GNN应用的挑战:

  • Scarcity of labeled data——缺少高质量的标记好的数据

  • Out-of-distribution prediction
    在这里插入图片描述
    推荐一篇论文,主要思想是对相关的GNNs进行预训练,便于获取图形数据——Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V., & Leskovec, J. (2019). Strategies for Pre-training Graph Neural Networks. arXiv preprint arXiv:1905.12265.
    在这里插入图片描述

  • 下一个挑战就是如何提高GNN的鲁棒性

在这里插入图片描述

5. Applications of Graph Neural Networks

这一部分主要是介绍了三个案例,具体的资料可以在网上检索到,以下供参考。

5.1 PinSage——GNN recommendation

5.2 Decagon——Heterogeneous GNN

5.3 GCPN——Goal-directed generation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值