CS224W 18.1-Limitations of Graph Neural Network

这篇博客探讨了图神经网络(GNN)的局限性,包括在特定条件下无法区分不同的图结构以及对噪声的敏感性。尽管GNN在捕获图结构方面表现出色,但简化后的理论分析表明,它们可能无法在所有情况下区分图结构。文章通过实例分析了GCN和GIN等模型,并指出GIN通过单射的子树聚合实现了对图结构的精确区分,其能力接近图同构测试(WL test)。此外,还讨论了节点特征对GNN性能的影响。
摘要由CSDN通过智能技术生成

视频地址,课件和笔记可见官网。

前面一直在说GNN非常吊,效果非常好. GNN就没有缺点和局限?

这一节就聊聊GNN的局限

GNN的关键在于对图结构的捕获,也就是邻居的聚合. 但是,现存的GNN有两大缺点

  1. 但是在某些情况下, 不同的图结构,GNN可能无法区分(当然有些GNN是可以区分的). 注意,这里做了非常多的简化, 所有节点的特征认为都是一样的, 用黄色颜色表示.

这里就引发我们的思考了.(1)即使简化后的理论分析或者证明可以说明GNN的局限性.但是,我们在实际使用GNN的时候,节点的特征往往是不同的. 这时候,GNN能区别不同的图结构吗?? (2)任意图结构都不能区分吗? 这肯定是不可能的. 应该说GNN对某些图结构不可区分.  这里说的是在图非同构的的情况下,依然无法区分. 后面会详细介绍

2. 另一个就是不够鲁邦,容易收到噪音的影响. 至于Noise的话,引入邻居的权重聚合可以一定程度上解决,比如GAT.

-图同构测试 graph isomorphism test就是用来测试两个图的结构是否一样.

这是一个非常非常难的问题 NP-hard的

-那么,如果用GNN来做图同构测试可以吗?

-回顾下之前GNN的聚合过程,可以展开成一个子树结构,按层来聚合.

根据展开后的邻居子树的不同, GNN可以把不同的节点映射为不同的表示.

-两个子树结构的例子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值