视频地址,课件和笔记可见官网。
前面一直在说GNN非常吊,效果非常好. GNN就没有缺点和局限?
这一节就聊聊GNN的局限
GNN的关键在于对图结构的捕获,也就是邻居的聚合. 但是,现存的GNN有两大缺点
但是在某些情况下, 不同的图结构,GNN可能无法区分(当然有些GNN是可以区分的). 注意,这里做了非常多的简化, 所有节点的特征认为都是一样的, 用黄色颜色表示.
这里就引发我们的思考了.(1)即使简化后的理论分析或者证明可以说明GNN的局限性.但是,我们在实际使用GNN的时候,节点的特征往往是不同的. 这时候,GNN能区别不同的图结构吗?? (2)任意图结构都不能区分吗? 这肯定是不可能的. 应该说GNN对某些图结构不可区分. 这里说的是在图非同构的的情况下,依然无法区分. 后面会详细介绍
2. 另一个就是不够鲁邦,容易收到噪音的影响. 至于Noise的话,引入邻居的权重聚合可以一定程度上解决,比如GAT.
-图同构测试 graph isomorphism test就是用来测试两个图的结构是否一样.
这是一个非常非常难的问题 NP-hard的
-那么,如果用GNN来做图同构测试可以吗?
-回顾下之前GNN的聚合过程,可以展开成一个子树结构,按层来聚合.
根据展开后的邻居子树的不同, GNN可以把不同的节点映射为不同的表示.
-两个子树结构的例子