在不同的自编码器架构中,编码器的输出会有所不同。
在传统的自编码器(AE)中,编码器的输出是一个潜在变量向量(latent variable vector),通常表示输入数据的“压缩”或降维表示。该向量的维度通常较低。
在变分自编码器(VAE)中,编码器的输出是由两个向量组成的元组(tuple),分别表示潜在变量的均值向量(mean vector)和方差向量(variance vector)。这两个向量被用于参数化一个高斯分布,从中进行采样得到潜在向量。
在向量量化自编码器(VQ-VAE)中,编码器的输出是一个离散的编码向量,将输入数据映射到一个离散的码书(codebook)中的最近邻向量。这个编码向量通常用于表示输入数据在码书中的索引,从而表示输入数据的“离散”表示。
需要注意的是,在编码器的输出后,这些向量通常会被传递给解码器(decoder),解码器根据编码器输出的信息重建输入数据。编码器的输出起到了将输入数据转化为潜在空间表示的作用,而解码器则用于从这个潜在表示中恢复原始输入数据。
总的来说,在自编码器架构中,编码器的输出是对输入数据进行编码、表示或压缩的向量,在不同的架构中,这些向量的具体形式和用途可能会有所不同。