高等数学《常微分方程》基础概念和定理梳理

《常微分方程》基础概念和定理复习

第一节 微分方程的相关概念

基本概念

(1)微分方程的定义:一般地,凡表示未知函数、末知函数的导数与自变量之间关系的方程,叫做微分方程,有时也简称方程

(2)微分方程的阶:微分方程中,所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶


方程的解相关概念

(1)微分方程的解:找出能满足微分方程的函数,将该函数代入微分方程使方程称为恒等式,该函数则称为此微分方程的解

(2)通解:微分方程的解中含有任意常数,且常数个数与微分方程的阶数相同,则这样的解称为此微分方程的通解

(3)特解:确定了通解中任意常数后,可以得到该条件下微分方程的特解,简称微分方程的特解。特解可以有很多个,取决于任意常数的确定情况。

(4)初值条件:将方程中的任意常数,给定一个初始的值,这种情况下给定的值称为初值条件。

(5)解的图形:微分方程的解的图形是一条积分曲线,也可称为微分方程的积分曲线。初值问题的几何意义,就是求微分方程通过点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0)的那条积分曲线。


第二节 可分离变量的微分方程

(1)可分离变量的微分方程形式:

如果一个微分方程能写成如下形式:
g ( y ) d y = f ( x ) d x g(y)dy = f(x)dx g(y)dy=f(x)dx
即:一端只含 y y y的函数和 d y dy dy​,另一端只含 x x x的函数和 d x dx dx, 那么原方程就称为可分离变量的微分方程

(2)隐式解:

(3)隐式通解:


第三节 齐次方程

(1)齐次方程:

如果一个一阶微分方程可化为如下形式:
d y d x = x y − y 2 x 2 − 2 x y \frac{dy}{dx}=\frac{xy-y^2}{x^2-2xy} dxdy=x22xyxyy2
那么它被称为齐次方程。


第四节 一阶线性微分方程

(1)线性方程的概念:

形如
d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)
的方程,称为一阶线性微分方程,因为它对于未知函数 y y y及其导数是一次方程。

(a)如果 Q ( x ) = 0 Q(x) = 0 Q(x)=0,那么方程(3)称为齐次的;

(b)如果 Q ( x ) = 0 Q(x) = 0 Q(x)=0, 那么方程(3)称为非齐次的。


第五节 可降阶的高阶微分方程

(1)高阶微分方程:阶数为二阶及以上的微分方程,称为高阶微分方程。

根据公式 y ′ ′ = f ( x , y , y ′ ) y'' = f(x, y, y') y′′=f(x,y,y) ,二阶微分方程可以表示为含有一阶导数的一阶微分方程。

三种容易降阶的高阶微分方程:

  1. y ( n ) = f ( x ) y^{(n)} = f(x) y(n)=f(x) 型:

两边同时积分可得
y ( n − 1 ) = f ( x ) y^{(n-1)} = f(x) y(n1)=f(x)
再次积分可得
y ( n − 2 ) = ∫ f ( x ) d x + C 1 y^{(n-2)} = \int{f(x)}dx+C_1 y(n2)=f(x)dx+C1
同理可得
y ( n − 2 ) = ∫ [ ∫ f ( x ) d x + C 1 ] d x + C 2 y^{(n-2)} = \int[\int{f(x)}dx+C_1]dx+C_2 y(n2)=[f(x)dx+C1]dx+C2

方程(6)即为含有 n n n 个任意常数的通解。


  1. y ′ ′ = f ( x , y ′ ) y'' = f(x, y') y′′=f(x,y) 型:

该方程,右侧不显式含有未知函数 y y y

y ′ = p y' = p y=p ,则
y ′ ′ = d p d x = p ′ y'' = \frac{dp}{dx} = p' y′′=dxdp=p


  1. y ′ ′ = f ( y , y ′ ) y'' = f(y, y') y′′=f(y,y) 型:

该方程,右侧不显式含有自变量 x x x

y ′ = p y' = p y=p,同时利用复合函数求导法则,将 y ′ ′ y'' y′′ 化为对 y y y 的导数,即
y ′ ′ = d p d x = d p d y ⋅ d y d x = p d p d y y'' = \frac{dp}{dx} = \frac{dp}{dy}·\frac{dy}{dx} = p\frac{dp}{dy} y′′=dxdp=dydpdxdy=pdydp


第六节 高阶线性微分方程

以二阶线性微分方程为例,引入高阶线性微分方程的内容。

二阶线性微分方程的概念:

形如
d 2 y d x x + P ( x ) d y d x + Q ( x ) y = f ( x ) \frac{d^2y}{dx^x}+P(x)\frac{dy}{dx}+Q(x)y = f(x) dxxd2y+P(x)dxdy+Q(x)y=f(x)
的微分方程,称作二阶线性微分方程

(a)当方程右侧 f ( x ) ≡ 0 f(x) \equiv 0 f(x)0​ 时,方程叫做齐次

(b) 当 $f(x)\not\equiv 0 $ 时,方程叫做非齐次

线性微分方程解的结构:

以二阶齐次线性方程为例:
y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y''+P(x)y'+Q(x)y=0 y′′+P(x)y+Q(x)y=0


(1)定理一:

如果函数 y . ( x ) y_.(x) y.(x) y 2 ( x ) y_2(x) y2(x) 是方程(10)的两个解,那么
y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x)
也是(10)的解,其中 C 1 C_1 C1 , C 2 C_2 C2​ 是任意常数.


(2)定理二:

如果 y 1 ( x ) y_1(x) y1(x) 与 $y_2(x) $ 是方程(10)的两个线性无关的特解,那么
y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x)
就是方程(10)的的通解。其中 C 1 , C 2 C_1, C_2 C1,C2​ 是任意常数。

补充概念:线性相关的定义——设 y 1 ( x ) , y 2 ( x ) , . . . , y n ( x ) y_1(x),y_2(x),...,y_n(x) y1(x),y2(x),...,yn(x) 为定义在区间 I I I 上的 n n n 个函数, 如果存在 n n n 个不全为零的常数 k 1 , k 2 , . . . , k n k_1, k_2, ..., k_n k1,k2,...,kn ,使得当 x ∈ I x\in I xI 时有恒等式
k 1 y 1 + k 2 y 2 + ⋅ ⋅ ⋅ + k n y n ≡ 0 k_1y_1+k_2y_2+···+k_ny_n\equiv0 k1y1+k2y2+⋅⋅⋅+knyn0
成立,那么称这 n n n 个函数在区间 I I I​ 上线性相关;否则称线性无关

将定理二推广到 n n n 阶齐次线性方程,有

  • 推论 如果 y 1 ( x ) , y 2 ( x ) , ⋯   , y n ( x ) y_{1}(x), y_{2}(x), \cdots, y_{n}(x) y1(x),y2(x),,yn(x) 是 n 阶齐次线性方程

y ( n ) + a 1 ( x ) y ( n − 1 ) + ⋯ + a n − 1 ( x ) y ′ + a n ( x ) y = 0 y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n-1}(x) y^{\prime}+a_{n}(x) y=0 y(n)+a1(x)y(n1)++an1(x)y+an(x)y=0

n n n 个线性无关的解, 那么, 此方程的通解为

y = C 1 y 1 ( x ) + C 2 y 2 ( x ) + ⋯ + C n y n ( x ) , y=C_{1} y_{1}(x)+C_{2} y_{2}(x)+\cdots+C_{n} y_{n}(x), y=C1y1(x)+C2y2(x)++Cnyn(x),

其中 C 1 , C 2 , ⋯   , C n C_{1}, C_{2}, \cdots, C_{n} C1,C2,,Cn 为任意常数.


(3)定理三:

y ∘ ( x ) y^{\circ}(x) y(x) 是二阶非齐次线性方程
y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x) y′′+P(x)y+Q(x)y=f(x)
的一个特解.

Y ( x ) Y(x) Y(x) 是与 d 2 y   d x 2 + P ( x ) d y   d x + Q ( x ) y = f ( x ) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+P(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+Q(x) y=f(x)  dx2d2y+P(x) dxdy+Q(x)y=f(x) 对应的齐次方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 .  y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \text {. } y′′+P(x)y+Q(x)y=0​ 的通解,


y = Y ( x ) + y ∗ ( x ) y=Y(x)+y^{*}(x) y=Y(x)+y(x)

是二阶非齐次线性微分方程 d 2 y   d x 2 + P ( x ) d y   d x + Q ( x ) y = f ( x ) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+P(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+Q(x) y=f(x)  dx2d2y+P(x) dxdy+Q(x)y=f(x) 的通解.


(4)定理四:

设非齐次线性方程 d 2 y   d x 2 + P ( x ) d y   d x + Q ( x ) y = f ( x ) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+P(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+Q(x) y=f(x)  dx2d2y+P(x) dxdy+Q(x)y=f(x) 的右端 f ( x ) f(x) f(x) 是两个函数之和, 即

y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) + f 2 ( x ) ,  y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f_{1}(x)+f_{2}(x) \text {, } y′′+P(x)y+Q(x)y=f1(x)+f2(x)

y 1 ∗ ( x ) y_{1}^{*}(x) y1(x) y 2 ∗ ( x ) y_{2}^{*}(x) y2(x) 分别是方程

y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f_{1}(x) y′′+P(x)y+Q(x)y=f1(x)

y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 2 ( x ) y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f_{2}(x) y′′+P(x)y+Q(x)y=f2(x)

的特解, 则 y 1 ∗ ( x ) + y 2 ∗ ( x ) y_{1}^{*}(x)+y_{2}^{*}(x) y1(x)+y2(x) 就是原方程的特解.

  • 18
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姚杰献

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值