【线性代数】矩阵、向量组和方程组的关系

【线性代数】矩阵、向量组和方程组的关系

在线性代数的学习中,我发现矩阵、向量组、方程组这几个概念具有密切联系,连贯性非常强,而且十分抽象难以理解。但是考研中线性代数的题型分值占比又相当可观,为此不得不啃下这把硬骨头。而教辅书籍里是按照知识区块生硬地划分成几个章节,不好理解。

我尝试用自己的思路和理解把这几个概念用直观的方式串起来。


什么是线性关系

在数学中,线性关系指的是两个变量之间的关系,可以用一条直线来表示,例如函数 y = a x + b y=ax+b y=ax+b 的图像就是一条直线。

更具体地说,如果变量 x x x y y y 满足一个方程 y = a x + b y=ax+b y=ax+b,其中 a a a b b b 是常数,那么 x x x y y y 之间就存在线性关系。

在更高维度上,线性关系可以扩展到多变量的情况。比如,假设我们有三个变量 x , y , z x,y,z x,y,z ,它们之间的线性关系可以表示为:
a x + b y + c z = d a x+b y+c z=d ax+by+cz=d
其中 a 、 b 、 c  和  d a 、 b 、 c \text { 和 } d abc  d 是常数。

线性关系的关键特征是,变量之间的关系是通过加权和来表示的,这使得我们可以使用矩阵和向量来更系统地处理和分析这些关系。

  • 加权和

在数学中,我们通过给每个变量 x i x_i xi 分配一个权重(系数 a i a_i ai​ ),然后计算这些加权后的变量的总和。例如
a 1 x 1 + a 2 x 2 + … + a n x n a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} a1x1+a2x2++anxn


为什么要研究线性关系

将问题转换成线性关系去解决有许多实际优势,特别是在计算和分析上。

  • 简化计算

线性关系在数学和计算上更简单。例如,线性方程组可以用矩阵方法求解,通过高斯消元法、逆矩阵法等方法,可以系统地找到解。而非线性方程组通常需要更复杂的迭代算法和数值方法。

  • 易于理解和解释

线性关系具有简单的几何解释,能够直观地表示为直线或平面。这使得线性模型更容易解释和理解。例如,在二维空间中,线性方程 y = m x + b y=mx+b y=mx+b​ 表示一条直线。

非线性关系例如 y = e x y=e^x y=ex 等函数,它们在几何上可能表示为曲线、曲面等复杂形状。

  • 求解方程组较简单

解线性方程组的方法较为直接且系统,而解非线性方程组的方法复杂多样,通常需要数值方法(如牛顿法、迭代法)进行近似求解。


利用线性方程组解决现实问题

线性方程组是由多个线性方程构成的一个系统。它们在现实世界中有着广泛的应用。

例如,考虑一个经济问题,我们需要分配资源来生产不同的产品。

假设我们有两种产品 x 1 x_1 x1 x 2 x_2 x2 ,每种产品都需要不同数量的原材料 a a a 和原材料 b b b

具体地,假设:

  • 生产一个单位的产品 x 1 x_1 x1 需要的原材料 a 、 b a、b ab 个数分别为 2、3;
  • 生产一个单位的产品 x 2 x_2 x2 需要的原材料 a 、 b a、b ab 个数分别为 4、2;

此外,我们还知道:

  • 可供生产的原材料 a a a 有100个单位库存;
  • 可供生产的原材料 b b b 有120个单位库存。

我们可以建立方程组来描述现有的生产材料库存的资源约束,以计算生产多少个产品 x 1 , x 2 x_1,x_2 x1x2 ,可以刚好消耗完所有库存原材料,达到资源的最大利用率。

于是方程组如下:
{ 2 x 1 + 3 x 2 = 100 4 x 1 + 2 x 2 = 120 \left\{\begin{array}{l} 2 x_{1}+3 x_{2}=100 \\ 4 x_{1}+2 x_{2}=120 \end{array}\right. {2x1+3x2=1004x1+2x2=120
可以看出,它就是一个线性方程组,满足线性方程组的定义。

那么如何解出 x 1 x_1 x1 x 2 x_2 x2 呢?


利用矩阵表达线性方程组

在线性代数中,我们可以用矩阵来简化和系统化地表示和求解线性方程组。以之前的经济问题为例,我们建立了以下线性方程组:
{ 2 x 1 + 3 x 2 = 100 4 x 1 + 2 x 2 = 120 \left\{\begin{array}{l} 2 x_{1}+3 x_{2}=100 \\ 4 x_{1}+2 x_{2}=120 \end{array}\right. {2x1+3x2=1004x1+2x2=120
我们可以将这个方程组转换成矩阵形式。首先,把系数排列成矩阵 A A A
A = [ 2 3 4 2 ] A=\left[\begin{array}{ll} 2 & 3 \\ 4 & 2 \end{array}\right] A=[2432]
再将变量 x 1 x_1 x1 x 2 x_2 x2 排成一个列向量 x x x
x = [ x 1 x 2 ] \mathbf{x}=\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right] x=[x1x2]
最后,将常数项排列成另一个列向量 b \mathbf{b} b
b = [ 100 120 ] \mathbf{b}=\left[\begin{array}{l} 100 \\ 120 \end{array}\right] b=[100120]
于是,原方程组可以表示为矩阵方程:
A x = b A\mathbf{x}=\mathbf{b} Ax=b
通过这种方式,我们将线性方程组的求解问题转化为矩阵运算问题,这不仅简化了计算过程,还能利用矩阵的各种性质和方法来更高效地找到解。


引入向量组,并理解方程组中的线性关系

在理解了如何用矩阵表示线性方程组后,我们可以进一步引入向量组来更直观地表达这些方程的线性关系。

首先,我们将矩阵 A A A 的每一列看作一个向量,这些向量组成了一个向量组。具体到我们之前的例子,矩阵 A A A 可以表示为以下两个列向量 a 1 \mathbf{a}_1 a1 a 2 \mathbf{a}_2 a2
A = [ 2 3 4 2 ] = [ a 1   a 2 ] = [ 2 4 ] [ 3 2 ] A=\left[\begin{array}{ll} 2 & 3 \\ 4 & 2 \end{array}\right] =\left[\begin{array}{ll} \mathbf{a}_1\ \mathbf{a}_2 \end{array}\right]= \left[\begin{array}{ll} 2 \\ 4 \end{array}\right]\left[\begin{array}{ll} 3 \\ 2 \end{array}\right] A=[2432]=[a1 a2]=[24][32]
这样,原方程组可以写成这两个向量的线性组合:
x 1 a 1 + x 2 a 2 = b x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 = \mathbf{b} x1a1+x2a2=b
其中
a 1 = [ 2 4 ] , a 2 = [ 3 2 ] , b = [ 100 120 ] 。 \mathbf{a}_1 = \left[\begin{array}{c} 2 \\ 4 \end{array}\right],\mathbf{a}_2 = \left[\begin{array}{c} 3 \\ 2 \end{array}\right],\mathbf{b} = \left[\begin{array}{c} 100 \\ 120 \end{array}\right]。 a1=[24]a2=[32]b=[100120]
这个表示方式突出了向量组的线性关系:我们希望通过适当选择系数 x 1 x_1 x1 x 2 x_2 x2,使得向量 b \mathbf{b} b 可以表示为 a 1 \mathbf{a}_1 a1 a 2 \mathbf{a}_2 a2 的加权和。

这种方式不仅简化了计算,还帮助我们理解线性方程组的几何意义。

具体来说,每一个方程对应于二维平面上的一条直线,而解线性方程组相当于找到这些直线的交点。如果向量 b \mathbf{b} b 位于由 a 1 \mathbf{a}_1 a1 a 2 \mathbf{a}_2 a2 所生成的平面内,那么方程组有解,并且 b \mathbf{b} b 可以用 a 1 \mathbf{a}_1 a1 a 2 \mathbf{a}_2 a2 的线性组合表示。

通过引入向量组的概念,我们不仅可以更直观地表达线性方程组,还能更好地理解它们的线性关系和几何意义。

  • 18
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姚杰献

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值