【泛函分析】距离空间的完备性

完备性

定义. 若距离空间 E E E 满足: E E E 中的任意 Cauchy 序列 { x n } \{x_{n}\} {xn} 收敛于 E E E 中的元.

Cauchy 序列的性质:

(1) 收敛序列是 Cauchy 序列;

(2) Cauchy 序列是有界的;

(3) 若 { x n } \{x_{n}\} {xn} 是 Cauchy 序列, 并且存在一个子列 { x n k } \{x_{n_{k}}\} {xnk} 收敛于 x x x, 则 { x n } \{x_{n}\} {xn} 收敛于 x x x.

证明: (1) 若 { x n } \{x_{n}\} {xn} 是任一收敛序列, 极限为 x x x, 要证明对于 ∀ ϵ > 0 \forall \epsilon \gt 0 ϵ>0, 存在正整数 N N N, 使得对于任意 m , n ≥ N m, n \geq N m,nN, ∣ x m − x n ∣ ≤ ϵ |x_{m}-x_{n}|\leq \epsilon xmxnϵ. 由收敛的定义, 则对 ϵ 2 > 0 \frac{\epsilon}{2} \gt 0 2ϵ>0, 存在正整数 N N N, 使得当 n ≥ N n\geq N nN 时, ∣ x n − x ∣ ≤ ϵ |x_{n}-x|\leq \epsilon xnxϵ, 则对于任意 m , n ≥ N m, n \geq N m,nN, ∣ x m − x n ∣ ≤ ∣ x m − x ∣ + ∣ x n − x ∣ ≤ ϵ |x_{m}-x_{n}|\leq |x_{m}-x|+|x_{n}-x|\leq \epsilon xmxnxmx+xnxϵ, 证毕.

(2) 若 { x n } \{x_{n}\} {xn} 是任一 Cauchy 序列, 任取正数 ϵ > 0 \epsilon \gt 0 ϵ>0, 存在正整数 N N N, 使得对于任意 m , n ≥ N m, n \geq N m,nN, ∣ x m − x n ∣ ≤ ϵ |x_{m}-x_{n}|\leq \epsilon xmxnϵ, 即 ∣ x m − x n ∣ ≤ ∣ x m ∣ + ∣ x n ∣ ≤ ϵ |x_{m}-x_{n}|\leq |x_{m}|+|x_{n}|\leq \epsilon xmxnxm+xnϵ, ∣ x m ∣ ≤ ϵ |x_{m}|\leq \epsilon xmϵ, x n ≤ ϵ x_{n}\leq \epsilon xnϵ, 所以当 n ≥ N n\geq N nN 时. ∣ x n ∣ ≤ ϵ |x_{n}|\leq \epsilon xnϵ, 因此 ∣ x n ∣ ≤ max ⁡ { ∣ x 1 ∣ , … , ∣ x N ∣ , ϵ } |x_{n}|\leq \max\{|x_{1}|, \dots, |x_{N}|, \epsilon\} xnmax{x1,,xN,ϵ}, 证毕.

(3) 即证明 lim ⁡ n → ∞ ∣ x n − x ∣ = 0 \lim\limits_{n\rightarrow \infty}|x_{n}-x|=0 nlimxnx=0, 对于任意正整数 k k k, ∣ x n − x ∣ ≤ ∣ x n − x n k ∣ + ∣ x n k − x ∣ |x_{n}-x|\leq |x_{n}-x_{n_{k}}|+|x_{n_{k}}-x| xnxxnxnk+xnkx, 由于 { x n } \{x_{n}\} {xn} 是 Cauchy 列, 所以 lim ⁡ n → ∞ k → ∞ ∣ x n − x n k ∣ = 0 \lim\limits_{n\rightarrow \infty \atop {k\rightarrow\infty}}|x_{n}-x_{n_{k}}|=0 knlimxnxnk=0, lim ⁡ n → ∞ k → ∞ { ∣ x n − x n k ∣ − ∣ x n k − x ∣ } = 0 \lim\limits_{n\rightarrow \infty \atop {k\rightarrow\infty}}\{|x_{n}-x_{n_{k}}|-|x_{n_{k}}-x|\}=0 knlim{xnxnkxnkx}=0, 显然 ∣ x n − x ∣ ≥ 0 |x_{n}-x|\geq 0 xnx0, 所以由夹逼定理可知 lim ⁡ n → ∞ k → ∞ ∣ x n − x ∣ = 0 \lim\limits_{n\rightarrow \infty \atop {k\rightarrow\infty}}|x_{n}-x|=0 knlimxnx=0, 即 lim ⁡ n → ∞ ∣ x n − x ∣ = 0 \lim\limits_{n\rightarrow \infty}|x_{n}-x|=0 nlimxnx=0.

完备的距离空间称为 Banach 空间.

E E E 是完备的距离空间的充要条件是:

对于 E E E 中任意一列半径趋于 0 0 0 且嵌套的闭球, 记为 { S n } , S n = { x ∣ d ( x , x n ) ≤ r n } \{S_{n}\}, S_{n}=\{x|d(x,x_{n})\leq r_{n}\} {Sn},Sn={xd(x,xn)rn}, 其中 r n → 0 r_{n}\rightarrow 0 rn0, 且对于 ∀ n ∈ N + \forall n \in \mathbb{N}^{+} nN+, S n ⊆ S n + 1 S_{n}\subseteq S_{n+1} SnSn+1, 则存在唯一的点 x ∈ ⋂ n = 1 ∞ S n x\in \bigcap\limits_{n=1}^{\infty}S_{n} xn=1Sn.

证明:

必要性:

首先证明存在性: 在每个闭球 S n S_{n} Sn 内任取一点 x n x_{n} xn, 构成一个序列 { x n } \{x_{n}\} {xn}, 该序列满足:
x m ∈ S n , ∀ n , m ≥ n x_{m}\in S_{n}, \forall n, m\geq n xmSn,n,mn
进而有
d ( x m , x n ) ≤ r n ∀ n , m ≥ n d(x_{m}, x_{n})\leq r_{n} \forall n, m\geq n d(xm,xn)rnn,mn
由于 r n → 0 r_{n}\rightarrow 0 rn0, 所以对于 ∀ ϵ > 0 \forall \epsilon \gt 0 ϵ>0, 存在 N N N, 当 n ≥ N n\geq N nN ∣ r n ∣ ≤ ϵ |r_{n}|\leq \epsilon rnϵ, 即对于 ∀ m , n ≥ N \forall m,n\geq N m,nN, d ( x m , x n ) ≤ ϵ d(x_{m},x_{n})\leq \epsilon d(xm,xn)ϵ, 因此 { x n } \{x_{n}\} {xn} 是 Cauchy 列, 由完备性可知其收敛于 x ∈ E x\in E xE. 此外, 由于 { x n } \{x_{n}\} {xn} S 1 S_{1} S1 中的序列且 S 1 S_{1} S1 是闭集, 因此 x ∈ S 1 x\in S_{1} xS1, 因此 x ∈ ⋂ n = 1 ∞ S n x\in \bigcap\limits_{n=1}^{\infty}S_{n} xn=1Sn.

唯一性: 若还存在 x ′ x' x 满足 x ′ ∈ ⋂ n = 1 ∞ S n x'\in \bigcap\limits_{n=1}^{\infty}S_{n} xn=1Sn, 则 d ( x , x ′ ) ≤ r n d(x, x')\leq r_{n} d(x,x)rn, ∀ n ∈ N + \forall n\in \mathbb{N}^{+} nN+, 令 n → ∞ n\rightarrow\infty n 可得 d ( x , x ′ ) ≤ 0 d(x,x')\leq 0 d(x,x)0, 因此 d ( x , x ′ ) = 0 d(x,x')=0 d(x,x)=0, x = x ′ x=x' x=x, 矛盾, 因此存在唯一的点 x ∈ ⋂ n = 1 ∞ S n x\in \bigcap\limits_{n=1}^{\infty}S_{n} xn=1Sn.

充分性:

即证明 E E E 中的任一 Cauchy 序列 { x n } \{x_{n}\} {xn} 收敛于 E E E 中的元. 对于 E E E 中的任一 Cauchy 序列 { x k } \{x_{k}\} {xk}, 由 Cauchy 序列的定义可知, 对于 ϵ = 1 n , ∀ n ∈ N + \epsilon = \frac{1}{n}, \forall n\in \mathbb{N}^{+} ϵ=n1,nN+, 存在 K n K_{n} Kn, 使得对于 ∀ p , q ≥ K n \forall p,q\geq K_{n} p,qKn, d ( x p , x q ) ≤ ϵ d(x_{p}, x_{q})\leq \epsilon d(xp,xq)ϵ, 进而 { x m ∣ m ≥ K n } ⊆ U ( x K n , ϵ ) ‾ \{x_{m}|m\geq K_{n}\}\subseteq \overline{U(x_{K_{n}}, \epsilon)} {xmmKn}U(xKn,ϵ), 由此可得到 E E E 中一列半径趋于 0 0 0 且嵌套的闭球 { U ( x K n , 1 n ) ‾ } \{\overline{U(x_{K_{n}}, \frac{1}{n})}\} {U(xKn,n1)}, 由题设条件可知, 存在唯一的点 x ∈ ⋂ n = 1 ∞ U ( x K n , 1 n ) ‾ x\in \bigcap\limits_{n=1}^{\infty}\overline{U(x_{K_{n}}, \frac{1}{n})} xn=1U(xKn,n1). 下面证明 x x x { x k } \{x_{k}\} {xk} 的极限: 取 { x k } \{x_{k}\} {xk} 的极限 { x K n } \{x_{K_{n}}\} {xKn}, 显然 d ( x K n , x ) ≤ 1 n d(x_{K_{n}},x)\leq \frac{1}{n} d(xKn,x)n1, ∀ n ∈ N + \forall n\in \mathbb{N}^{+} nN+, 由于 lim ⁡ n → ∞ 1 n = 0 \lim\limits_{n\rightarrow \infty}\frac{1}{n}=0 nlimn1=0 d ( x K n , x ) ≥ 0 d(x_{K_{n}},x)\geq 0 d(xKn,x)0, 由夹逼定理可知 lim ⁡ n → ∞ d ( x K n , x ) = 0 \lim\limits_{n\rightarrow \infty}d(x_{K_{n}},x)=0 nlimd(xKn,x)=0, 所以 { x K n } \{x_{K_{n}}\} {xKn} 收敛于 x x x, 进而 { x n } \{x_{n}\} {xn} 收敛于 x x x.

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值