泛函分析基础1-度量空间和赋范线性空间5:度量空间的完备化

我们曾指出直线上有理数全体 Q \mathbf { Q } Q 作为 R \mathbf { R } R 的子空间不是完备的度量空间,但是我们可以将 Q u \mathrm { Q } ^ { u } Qu 扩大"成完备的度量空间 R , \mathbf { R } , R,即 在 Q \mathbf { Q } Q 中 加入"无理数",使之成为新的度量空间 R , \mathbf { R } , R, 并且 Q \mathbf { Q } Q R \mathbf { R } R 中稠密.下面我们要说明每一个不完备的度量空间都可以加以"扩大",即成为某个完备度量空间的稠密子空间,为此,首先介绍几个概念

定义

( X , d ) , ( X ~ , d ~ ) ( X , d ) , ( \tilde { X } , \tilde { d } ) (X,d),(X~,d~) 是两个度量空间,如果存在 X X X X ~ \tilde { X } X~ 上 的保距映射 T , T , T, d ~ ( T x , T y ) = d ( x , y ) , \tilde { d } ( T x , T y ) = d ( x , y ) , d~(Tx,Ty)=d(x,y), 则称 ( X , d ) ( X , d ) (X,d) ( X ~ , d ~ ) ( \tilde { X } , \tilde { d } ) (X~,d~) 等 距同构,此时 T T T 称为 X X X X ~ \tilde { X } X~ 上 的等距同构映射

在泛函分析中往往把两个等距同构的度量空间不加区别而视为同一的

定理1(度量空间的完备化定理)

X = ( X , d ) X = ( X , d ) X=(X,d)是度量空间,那么一定存在一完备度量空间 X ~ = ( X ~ , d ~ ) , \tilde { X } = ( \tilde { X } , \tilde { d } ) , X~=(X~,d~), 使 X X X X ~ \tilde { X } X~ 的 某个稠密子空间 W W W 等 距同构,并且 X ~ \tilde { X } X~ 在等距同构意义下是唯一的,即若 ( X ^ , d ^ ) ( \hat { X } , \hat { d } ) (X^,d^) 也是一完备度量空间,且 X X X X ^ \hat { X } X^ 的 某个稠密子空间等距同构,则 ( X ~ , d ~ ) ( \tilde { X } , \tilde { d } ) (X~,d~) ( X ^ , d ^ ) ( \hat { X } , \hat { d } ) (X^,d^) 等 距同构

证明
我们分成四步来证明.
(1)
构造 X ~ = ( X ~ , d ~ ) . \tilde { X } = ( \tilde { X } , \tilde { d } ) . X~=(X~,d~).
X ¨ \ddot { X } X¨ X X X 中柯西点列 x ^ = { x n } \hat { x } = \left\{ x _ { n } \right\} x^={ xn} 全体,对 X ~ \tilde { X } X~中任意两个元素 x ~ = ∣ x n ∣ , y ^ = { y n } , \tilde { x } = \left| x _ { n } \right| , \hat { y } = \left\{ y _ { n } \right\} , x~=xn,y^={ yn},如果

lim ⁡ n → ∞ d ( x n , y n ) = 0 , ( 1 ) \lim _ { n \rightarrow \infty } d \left( x _ { n } , y _ { n } \right) = 0 ,\quad\quad(1) nlimd(xn,yn)=0,(1)

则称 x ~ \tilde { x } x~ y ˉ \bar { y } yˉ 相等,记为 x ~ = y ~ , \tilde { x } = \tilde { y } , x~=y~, ∣ x n ∣ = ∣ y n ∣ . \left| x _ { n } \right| = \left| y _ { n } \right| . xn=yn. X ~ \tilde { X } X~ 中任意两点 x ^ = ∣ x n ∣ \hat { x } = \left| x _ { n } \right| x^=xn y ^ = { y n } , \hat { y } = \left\{ y _ { n } \right\} , y^={ yn}, 定义

d ~ ( x ~ , y ~ ) = lim ⁡ n → ∞ d ( x n , y n ) . ( 2 ) \tilde { d } ( \tilde { x } , \tilde { y } ) = \lim _ { n \rightarrow \infty } d \left( x _ { n } , y _ { n } \right) .\quad\quad(2) d~(x~,y~)=nlimd(xn,yn).(2)

我们首先指出上式右端极限存在.事实上,由三点不等式

d ( x n , y n ) ⩽ d ( x n , x m ) + d ( x m , y m ) + d ( y n , y n ) , d \left( x _ { n } , y _ { n } \right) \leqslant d \left( x _ { n } , x _ { m } \right) + d \left( x _ { m } , y _ { m } \right) + d \left( y _ { n } , y _ { n } \right) , d(xn,yn)d(xn,xm)+d(xm,ym)+d(yn,yn),

所以

d ( x n , y n ) − d ( x m , y n ) ⩽ d ( x n , x m ) + d ( y n , y m ) . d \left( x _ { n } , y _ { n } \right) - d \left( x _ { m } , y _ { n } \right) \leqslant d \left( x _ { n } , x _ { m } \right) + d \left( y _ { n } , y _ { m } \right) . d(xn,yn)d(xm,yn)d(xn,xm)+d(yn,ym).

类似也有

d ( x m , y m ) − d ( x n , y n ) ⩽ d ( x n , x m ) + d ( y n , y m ) . d \left( x _ { m } , y _ { m } \right) - d \left( x _ { n } , y _ { n } \right) \leqslant d \left( x _ { n } , x _ { m } \right) + d \left( y _ { n } , y _ { m } \right) . d(xm,ym)d(xn,yn)d(xn,xm)+d(yn,ym).

由此得到

∣ d ( x m , y m ) − d ( x n , y n ) ∣ ⩽ d ( x n , x m ) + d ( y n , y m ) . ( 3 ) \left| d \left( x _ { m } , y _ { m } \right) - d \left( x _ { n } , y _ { n } \right) \right| \leqslant d \left( x _ { n } , x _ { m } \right) + d \left( y _ { n } , y _ { m } \right) .\quad\quad(3)

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值