泛函分析笔记03:完备距离空间及其应用

第一章:距离空间和拓扑空间

1.3完备性距离空间

完备性

定义2.4:设 ( X , d ) (X,d) (X,d)是距离空间, { x n } n = 1 ∞ ⊂ X \{x_n\}_{n=1}^\infty\sub X {xn}n=1X,若 ∀ ϵ > 0 , ∃ N \forall \epsilon>0,\exist N ϵ>0,N,当 m , n > N m,n>N m,n>N时有 d ( x m , x n ) < ϵ d(x_m,x_n)<\epsilon d(xm,xn)<ϵ,则称 { x n } n = 1 ∞ \{x_n\}_{n=1}^\infty {xn}n=1 X X X中的Cauchy列。如果任何Cauchy列都在 X X X中收敛,则称 X X X是完备的。

完备空间的例子:

  • K n \mathbb{K}^n Kn
  • C [ a , b ] C[a,b] C[a,b]
  • 所有离散距离空间
  • s s s

不完备空间的例子:

  • ( 0 , 1 ) (0,1) (0,1)在通常距离下

  • C [ 0 , 1 ] C[0,1] C[0,1]中定义距离 d 1 ( x , y ) = ∫ 0 1 ∣ x ( t ) − y ( t ) ∣ d t d_1(x,y)=\int_0^1 |x(t)-y(t)|dt d1(x,y)=01x(t)y(t)dt

闭球套定理

定理2.5:(闭球套定理)设 ( X , d ) (X,d) (X,d)完备, B n = B ( x n , r n ) ↘ B_n=B(x_n,r_n)\searrow Bn=B(xn,rn)为闭球套且 lim ⁡ n → ∞ r n = 0 \lim_{n\rightarrow \infty} r_n=0 limnrn=0,则 ∃   !   x ∈ ⋂ n = 1 ∞ B n \exist \ ! \ x \in \bigcap_{n=1}^{\infty} B_{n}  ! xn=1Bn

闭球套定理可看作在 R \mathbb R R中闭区间套定理的推广。如果存在一列闭球套,并且半径趋近于0,则闭球套存在唯一公共点。

注:但若半径极限不为0,则闭球套未必有公共点。

Baire纲定理

定义2.6:

  • (疏集)对于距离空间(拓扑空间) X X X,如果 E E E不稠于 X X X中任何非空开子集,则称 E E E为疏集。

注: E E E为疏集定义    ⟺    \iff E ˉ \bar E Eˉ不含内点

  • (第一/二纲集) 可数个疏集的并称为第一纲集;不是第一纲的集合称为第二纲的。

注:若一个距离空间只有有限个点,则该集合为第二纲的。离散距离空间是第二纲的。

虽然离散距离空间的点之间看起来都有“间距”,但实际上对于每一个点而言,都存在一个开球(不妨半径取为1/2),这个开球中只有这个点本身,则这个开始是属于原空间的。所以每一个离散的点都不是孤立点而是内点。故离散距离空间是第二纲的。

对于前文讨论的完备距离空间有以下定理

定理2.7:(Baire纲定理) 完备距离空间 X X X都是第二纲的。

完备化

完备化:对任意距离空间 ( X , d ) (X, d) (X,d), 均存在完备的距 离空间 ( X ~ , d ~ ) (\tilde{X}, \tilde{d}) (X~,d~), 使 ( X , d ) (X, d) (X,d) ( X ~ , d ~ ) (\tilde{X}, \tilde{d}) (X~,d~) 的一个稠子空间等距, 并且在等距的意义下这样的 ( X ~ , d ~ ) (\tilde{X}, \tilde{d}) (X~,d~) 还是唯一的,称之为 ( X , d ) (X, d) (X,d) 的完备化空间。有时亦不妨设 ( X , d ) (X, d) (X,d) 为其完备 化 ( X ~ , d ~ ) (\tilde{X}, \tilde{d}) (X~,d~) 的(稠)子空间。

1.4压缩映射定理

如果 x 0 x_0 x0满足 f ( x 0 ) = x 0 f(x_0)=x_0 f(x0)=x0,则称 x 0 x_0 x0 f f f的不动点。例:任何连续函数 f : [ 0 , 1 ] → [ 0 , 1 ] f:[0,1]\rightarrow [0,1] f:[0,1][0,1]均有不动点。

定理2.8:(压缩映射定理) 设 ( X , d ) (X,d) (X,d)完备, T : X → X T:X\rightarrow X T:XX为映射,如果存在 θ ∈ [ 0 , 1 ) \theta\in[0,1) θ[0,1)使 d ( T x , T y ) ≤ θ d ( x , y ) , ∀ x , y ∈ X d(Tx,Ty)\le \theta d(x,y),\forall x,y\in X d(Tx,Ty)θd(x,y),x,yX,则 T T T有唯一的不动点,即存在 x ˉ ∈ X \bar x\in X xˉX使 T x ˉ = x T\bar x =x Txˉ=x

证:任取 x 0 ∈ X x_{0} \in X x0X, 记 x n + 1 = T x n , ∀ n ≥ 0 x_{n+1}=T x_{n}, \quad \forall n \geq 0 xn+1=Txn,n0, 则 { x n } n = 1 ∞ ⊆ \left\{x_{n}\right\}_{n=1}^{\infty} \subseteq {xn}n=1 X X X 。 下证, { x n } n = 1 ∞ \left\{x_{n}\right\}_{n=1}^{\infty} {xn}n=1 为Cauchy列且其极限就是 T T T 的一个 不动点。
d ( x n + 1 , x n ) = d ( T x n , T x n − 1 ) ≤ θ d ( x n , x n − 1 ) ≤ ⋯ ≤ θ n d ( x 1 , x 0 ) ∴ ∀ n ≥ 0 , p ≥ 1 \begin{aligned} &d\left(x_{n+1}, x_{n}\right)=d\left(T x_{n}, T x_{n-1}\right) \leq \theta d\left(x_{n}, x_{n-1}\right) \leq \cdots \leq \theta^{n} d\left(x_{1}, x_{0}\right) \\ &\therefore \quad \forall n \geq 0, p \geq 1 \end{aligned} d(xn+1,xn)=d(Txn,Txn1)θd(xn,xn1)θnd(x1,x0)n0,p1

d ( x n + p , x n ) ≤ d ( x n + p , x n + p − 1 ) + ⋯ + d ( x n + 1 , x n ) ≤ { θ n + p − 1 + θ n + p − 2 + ⋯ + θ n } d ( x 1 , x 0 ) = θ n − θ n + p 1 − θ d ( x 1 , x 0 ) ≤ θ n 1 − θ d ( x 1 , x 0 ) → 0 (  当  n → ∞ ) \begin{aligned} d\left(x_{n+p}, x_{n}\right) & \leq d\left(x_{n+p}, x_{n+p-1}\right)+\cdots+d\left(x_{n+1}, x_{n}\right) \\ & \leq\left\{\theta^{n+p-1}+\theta^{n+p-2}+\cdots+\theta^{n}\right\} d\left(x_{1}, x_{0}\right) \\ &=\frac{\theta^{n}-\theta^{n+p}}{1-\theta} d\left(x_{1}, x_{0}\right) \\ & \leq \frac{\theta^{n}}{1-\theta} d\left(x_{1}, x_{0}\right) \rightarrow 0 \quad(\text { 当 } n \rightarrow \infty) \end{aligned} d(xn+p,xn)d(xn+p,xn+p1)++d(xn+1,xn){θn+p1+θn+p2++θn}d(x1,x0)=1θθnθn+pd(x1,x0)1θθnd(x1,x0)0(  n)

∴ { x n } n = 1 ∞ \therefore\left\{x_{n}\right\}_{n=1}^{\infty} {xn}n=1 X X X 中的C-列, 而 X X X 备, ∃ x ˉ ∈ X \exists \bar{x} \in X xˉX s.t. lim ⁡ n → ∞ x n = x ˉ \lim _{n \rightarrow \infty} x_{n}=\bar x limnxn=xˉ

另一方面,显然 T T T X X X 上连续,在 x n + 1 = T x n x_{n+1}=T x_{n} xn+1=Txn 中 令 n → ∞ n \rightarrow \infty n x ˉ = T x ˉ \bar{x}=T \bar{x} xˉ=Txˉ, 所以 x ˉ \bar{x} xˉ T T T 的不动点。
唯一性 假设 y ˉ ∈ X \bar{y} \in X yˉX T T T 的另一不动点, 则
d ( x ˉ , y ˉ ) = d ( T x ˉ , T y ˉ ) ≤ θ d ( x ˉ , y ˉ ) d(\bar{x}, \bar{y})=d(T \bar{x}, T \bar{y}) \leq \theta d(\bar{x}, \bar{y}) d(xˉ,yˉ)=d(Txˉ,Tyˉ)θd(xˉ,yˉ)
因此 d ( x ˉ , y ˉ ) = 0 d(\bar{x}, \bar{y})=0 d(xˉ,yˉ)=0, 故 x ˉ = y ˉ \bar{x}=\bar{y} xˉ=yˉ

误差估计:在 d ( x n + p , x n ) ≤ θ n 1 − θ d(x_{n+p},x_n)\le \frac{\theta^n}{1-\theta} d(xn+p,xn)1θθn 中令 p → ∞ p \rightarrow \infty p
d ( x ˉ , x n ) ≤ θ n 1 − θ d ( x 1 , x 0 ) = θ n 1 − θ d ( T x 0 , x 0 ) d\left(\bar{x}, x_{n}\right) \leq \frac{\theta^{n}}{1-\theta} d\left(x_{1}, x_{0}\right)=\frac{\theta^{n}}{1-\theta} d\left(T x_{0}, x_{0}\right) d(xˉ,xn)1θθnd(x1,x0)=1θθnd(Tx0,x0)

定理 2.9: 设 ( X , d ) (X, d) (X,d) 完备, T : X → X T: X \rightarrow X T:XX ,如果存在 θ ∈ \theta \in θ [ 0 , 1 ) [0,1) [0,1) n ∈ N n \in \mathbb{N} nN 使 d ( T n x , T n y ) ≤ θ d ( x , y ) , ∀ x , y ∈ X , d\left(T^{n} x, T^{n} y\right) \leq \theta d(x, y), \quad \forall x, y \in X, \quad d(Tnx,Tny)θd(x,y),x,yX, T T T 有 唯一的不动点。

注:若函数 f f f不满足在压缩映射定理,则不一定说明该函数没有不动点。我们只需找到 f f f的某一阶复合是满足压缩映射定理的,即可说明原函数是有唯一不动点的。

误差估计 ∀ x ∈ X \forall x \in X xX n ≤ m ∈ N n \leq m \in \mathbb{N} nmN
d ( x ˉ , T m x ) ≤ K ⋅ θ [ m n ] 1 − θ , K = max ⁡ 0 ≤ k < n d ( T k x , T k + n x ) d\left(\bar{x}, T^{m} x\right) \leq K \cdot \frac{\theta^{\left[\frac{m}{n}\right]}}{1-\theta}, \quad K=\max _{0 \leq k<n} d\left(T^{k} x, T^{k+n} x\right) d(xˉ,Tmx)K1θθ[nm],K=0k<nmaxd(Tkx,Tk+nx)

1.5拓扑空间

重新定义开集

定义 2.10: 设 X X X 为一非空集合, τ ⊆ 2 X \tau \subseteq 2^{X} τ2X 为一非空集 族,且满足条件:
(1) X , ∅ ∈ τ X, \emptyset \in \tau X,τ;
(2) τ \tau τ 中任意个元的并仍属于 τ \tau τ;
(3) τ \tau τ 中任意有限个元的交仍属于 τ \tau τ,

则称 τ \tau τ X X X 上的一个拓扑。而称 ( X , τ ) (X, \tau) (X,τ) 为拓扑空间。 τ \tau τ 中 元称为 X X X ( X , τ ) (X, \tau) (X,τ) 的开集。

:设 ( X , d ) (X, d) (X,d) 为距离空间, 则 X X X 中所有开集组成的 集族 τ \tau τ 满足拓扑空间的定义,因此每一个距离空间都 是一个拓扑空间。(称 τ \tau τ 为距离 d d d 产生的拓扑)
如果拓扑空间 ( X , τ ) (X, \tau) (X,τ) 的拓扑 τ \tau τ 可由 X X X 上某距离 d d d 产生, 则称拓扑空间 ( X , τ ) (X, \tau) (X,τ) 可距离化。
: 设 X X X 为一非空集合, 则 τ ∞ = 2 X \tau_{\infty}=2^{X} τ=2X τ 0 = { X , ∅ } \tau_{0}=\{X, \emptyset\} τ0={X,} 都 是 X X X 上的拓扑。
如果 τ 1 , τ 2 \tau_{1}, \tau_{2} τ1,τ2 都是 X X X 上的拓扑且 τ 1 ⊆ τ 2 \tau_{1} \subseteq \tau_{2} τ1τ2, 则称拓扑 τ 1 \tau_{1} τ1 比 拓扑 τ 2 \tau_{2} τ2 弱,或者拓扑 τ 2 \tau_{2} τ2 比拓扑 τ 1 \tau_{1} τ1 强。
上述例子中 τ ∞ \tau_{\infty} τ X X X 上最强的拓扑而 τ 0 \tau_{0} τ0 则是 X X X 上最弱的拓扑。

分离公理

T 0 T_0 T0分离公理:在拓扑空间 X X X 中,如果任取 x , y ∈ X , x ≠ y x, y \in X, x \neq y x,yX,x=y, 则存在 x x x 的邻 域 U U U 不包含 y y y 或者存在 y y y 的邻域 V V V 不包含 x x x,称空间 X X X 满足 T 1 T_{1} T1 分离公理。

T 1 T_1 T1分离公理:在拓扑空间 X X X 中,如果任取 x , y ∈ X , x ≠ y x, y \in X, x \neq y x,yX,x=y, 则存在 x x x 的邻 域 U U U 不包含 y y y 并且存在 y y y 的邻域 V V V 不包含 x x x,称空间 X X X 满足 T 1 T_{1} T1 分离公理。

T 2 T_2 T2分离公理(Hausdorff分离公理):设 X X X 是拓扑空间,如果任取 x , y ∈ x, y \in x,y X , x ≠ y X, x \neq y X,x=y, 则分别存在 x x x 的邻域 G x G_{x} Gx y y y 的邻域 G y G_{y} Gy, 使得 G x ∩ G y = ∅ G_{x} \cap G_{y}=\varnothing GxGy=, 称空间 X X X T 2 T_{2} T2 的或 Hausdorff 空间。

T 3 T_3 T3分离公理:设 X X X T 1 T_{1} T1 拓扑空间,如果任取 x ∈ X x \in X xX 及不包含点 x x x 的任 一闭集 A A A, 存在开集 U , V U, V U,V,使得 x ∈ U , A ⊂ V x \in U, A \subset V xU,AV U ∩ V = ∅ U \cap V=\varnothing UV=, 则称空间 X X X T 3 T_{3} T3 的。

T 4 T_4 T4分离公理:设 X X X T 1 T_{1} T1 拓扑空间,如果对 X X X 中任意两个不相交的闭集 A , B A, B A,B, 存在不相交的开集 U , V U, V U,V,使得 A ⊂ U , B ⊂ V A \subset U, B \subset V AU,BV, 则称拓扑空间 X X X T 4 T_{4} T4 的或 正规拓扑空间。

定理2.11:每一个距离空间都是 T 4 T_4 T4

定理2.12: T 4 ⇒ T 3 ⇒ T 2 ⇒ T 1 ⇒ T 0 T_4\Rightarrow T_3 \Rightarrow T_2\Rightarrow T_1\Rightarrow T_0 T4T3T2T1T0,反之不成立

连续性

同数分中定义

定义2.13: 设 X , Y X, Y X,Y 是两个拓扑空间, f : X → Y f: X \rightarrow Y f:XY 是 一映射, x 0 ∈ X x_{0} \in X x0X, 如果对 f ( x 0 ) f\left(x_{0}\right) f(x0) 的任一邻域 V ⊆ Y V \subseteq Y VY 都 存在 x 0 x_{0} x0 的邻域 U U U 使得 f ( U ) ⊆ V f(U) \subseteq V f(U)V, 则称 f f f x 0 x_{0} x0 点连续; 如 果 f f f X X X 中每一点都连续则称 f f f X X X 上连续。

定理 2.14: f : X → Y f: X \rightarrow Y f:XY 连续 ⟺ ∀ \Longleftrightarrow \forall 开集 G ⊆ Y G \subseteq Y GY ,原 象 f − 1 ( G ) f^{-1}(G) f1(G) X X X 中为开集 ⟺ ∀ \Longleftrightarrow \forall \quad 闭集 F ⊆ Y F \subseteq Y FY, 原象 f − 1 ( F ) f^{-1}(F) f1(F) X X X 中 为闭集。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 线性与非线性泛函分析数学中重要的研究领域,广泛应用于自然科学和工程技术领域。线性泛函分析是研究线性空间以及其上的线性映射的理论。它通过引入赋范空间、内积空间和希尔伯特空间等概念,研究线性空间上的连续线性映射和线性方程组的解的存在性与唯一性。线性泛函分析应用包括数值分析、偏微分方程、控制论和量子力学等。 非线性泛函分析是研究非线性空间以及其上的非线性映射的理论。它考虑非线性问题的特殊性质,例如不可微性、振荡性和多解性。非线性泛函分析主要研究非线性方程、变分问题和最优化问题的解的性质和存在性。非线性泛函分析应用涵盖了许多领域,如材料科学、力学、生物学和经济学等。 《线性与非线性泛函分析及其应用pdf》是一本介绍线性与非线性泛函分析以及它们的应用的书籍。该书通过详细阐述线性泛函分析和非线性泛函分析的基本理论和方法,使读者能够理解和掌握这两个领域的主要概念和技巧。此外,该书还将线性与非线性泛函分析与实际问题相结合,介绍了它们在不同领域的应用,以便读者能够将所学知识应用于实际工作中。 总之,《线性与非线性泛函分析及其应用pdf》是一个有关线性与非线性泛函分析的书籍,它介绍了这两个领域的基本理论和方法,并展示了它们在实际问题中的应用。对于对线性与非线性泛函分析感兴趣的读者,该书值得一读。 ### 回答2: 线性泛函分析研究的是线性空间上的线性映射与函数,而非线性泛函分析则研究的是非线性映射与函数。线性泛函分析的基础是线性代数,通过引入向量空间、内积空间、拓扑空间等概念,研究线性空间上的性质和结构。线性泛函分析的主要应用领域有偏微分方程、数值分析、量子力学等。非线性泛函分析则研究非线性映射和函数的性质和特征。非线性泛函分析主要研究的对象是包括但不限于偏微分方程、动力系统、最优控制等的非线性问题。非线性泛函分析具有广泛的应用,包括物理学、力学、经济学、生物学等多个领域。《线性与非线性泛函分析及其应用》是一本介绍线性与非线性泛函分析以及其应用的PDF电子书。这本书主要从理论和实践两个方面介绍了线性与非线性泛函分析及其应用。通过阅读这本书,读者可以了解线性与非线性泛函分析的基本概念、定理和方法,并且了解其在各个领域的应用。这本书适合对泛函分析有一定了解的读者阅读,对于研究线性与非线性问题以及从事相关领域的工作人员来说,这本书是一本非常有价值的参考书。 ### 回答3: 线性与非线性泛函分析数学中一种重要的研究方法,主要研究函数空间中的线性与非线性映射以及相关的性质和应用。 线性泛函分析主要研究线性空间中的线性映射,即将一个线性空间映射到另一个线性空间的函数。其研究内容包括线性算子、线性方程组以及线性空间中的向量等。通过线性泛函分析的方法,我们可以研究线性空间的性质、解析性质以及其在工程科学、物理学等领域的应用。 非线性泛函分析则主要研究非线性空间中的非线性映射,即将一个非线性空间映射到另一个非线性空间的函数。其研究内容包括非线性算子、非线性方程以及非线性空间中的函数等。非线性泛函分析的研究方法更加复杂,需要运用函数分析、微分几何、拓扑学等多种数学工具来分析非线性映射的性质和解析性质。非线性泛函分析在物理学、力学、弹性力学、流体力学等领域的应用非常广泛。 《线性与非线性泛函分析及其应用》pdf是一本涵盖线性与非线性泛函分析的书籍,以及它们在实际应用中的具体案例和解析性质的分析。通过阅读这本书,我们可以更加深入地了解线性与非线性泛函分析数学理论和方法,以及它们在不同领域的应用,对于进行科学研究和应用技术有着重要的指导作用。它不仅可以帮助我们提高对函数空间中线性与非线性映射性质的理解,还可以为我们理解和解决实际问题提供实用的数学工具和方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值