泛函分析笔记02:距离空间中的点集与空间的完备性

第一章:距离空间和拓扑空间

1.2 距离空间中的点集

开集与闭集

定义2.1:设 ( X , d ) (X,d) (X,d)是距离空间, G ∈ X , x 0 ∈ X G\in X,x_0\in X GX,x0X,如果存在 r > 0 r>0 r>0,使得 S ( x 0 , r ) ⊂ G S(x_0,r)\subset G S(x0,r)G,则称 x 0 x_0 x0 G G G的内点。如果 G G G中的每个店都是内点,则称 G G G为开集。

例1:开球 S ( x 0 , r ) S(x_0,r) S(x0,r)为开集,其中 r > 0 r>0 r>0

定理2.1: X X X中的开集满足:

  • ∅ , X \varnothing ,X ,X是开集
  • 任意个开集的并集是开集
  • 有限个开集的交集是开集

定义2.2:设 A A A 是距离空间 ( X , d ) (X,d) X,d) 中的子集, x 0 ∈ X x_0\in X x0X

  • 如果 ∀ ϵ > 0 , A ∩ S ( x 0 , ϵ ) ≠ ∅ \forall \epsilon>0,A\cap S(x_0,\epsilon)\not= \varnothing ϵ>0,AS(x0,ϵ)=,则称 x 0 x_0 x0 A A A的接触点, A A A的接触点的全体称为 A A A 的闭包,记作 A ‾ \overline{A} A
  • 如果 ∀ ϵ > 0 , A ∩ ( S ( x 0 , ϵ ) \   { x 0 } ) ≠ ∅ \forall \epsilon>0,A\cap (S(x_0,\epsilon)\backslash\ \{x_0\})\not= \varnothing ϵ>0,A(S(x0,ϵ)\ {x0})=,则称 x 0 x_0 x0 A A A的极限点或聚点。所有极限点的集合称为 A A A的导集,记为 A ′ A' A
  • 如果存在 ϵ > 0 \epsilon>0 ϵ>0,使得 A ∩ S ( x 0 , ϵ ) = { x 0 } A\cap S(x_0,\epsilon)=\{x_0\} AS(x0,ϵ)={x0},则称 x 0 x_0 x0 A A A的孤立点

性质1:

  • x 0 x_0 x0 A A A的接触点    ⟺    \iff ∃ { x n } n = 1 ∞ ⊂ A , s . t .   x n → x 0 \exists \{x_n\}_{n=1}^\infty\subset A,s.t.\ x_n\rightarrow x_0 {xn}n=1A,s.t. xnx0

  • x 0 x_0 x0 A A A的极限点    ⟺    \iff $\exists 两 两 不 同 的 点 两两不同的点 {x_n}_{n=1}^\infty\subset A,s.t.\ x_n\rightarrow x_0$

  • x 0 x_0 x0 A A A的极限点    ⟺    \iff x 0 ∈ A \   A ′ x_0 \in A\backslash\ A' x0A\ A

性质2:

  • A ⊂ A ‾ A\subset \overline{A} AA
  • A ⊂ B ⇒ A ‾ ⊂ B ‾ A\subset B \Rightarrow \overline A\subset \overline B ABAB
  • A ∪ B ‾ = A ‾ ∪ B ‾ \overline{A\cup B}=\overline A \cup \overline B AB=AB
  • A ‾ ‾ = A ‾ \overline{\overline A}=\overline A A=A

性质3:

  • A A A 为闭集    ⟺    \iff ∀ { x n } n = 1 ∞ ⊂ A \forall \{x_n\}_{n=1}^\infty \subset A {xn}n=1A,且 x n → x 0 ∈ X x_n\rightarrow x_0\in X xnx0X 可知 x 0 ∈ A x_0\in A x0A

  • A A A为闭集    ⟺    \iff A c A^c Ac为开集; A A A为开集    ⟺    \iff A c A^c Ac为闭集

定理2.2: X X X中闭集满足:

  • ∅ , X \varnothing ,X ,X是闭集
  • 任意个闭集的交集是闭集
  • 有限个闭集的并集是闭集

例2:闭球 B ( x 0 , r ) B(x_0,r) B(x0,r)为闭集

例3:在离散距离空间中,每个子集都是既开又闭集合

可分性与稠密性

定义2.3: 设 A , B ⊂ X A,B\sub X A,BX,如果 B ⊂ A ‾ B\sub \overline A BA,则称 A A A稠密于 B B B。如果 A A A是至多可数集,且 B ⊂ A ‾ B\sub \overline A BA,则称 B B B是可分的。

可分空间的例子:

  • K n \mathbb{K}^n Kn
  • C [ a , b ] C[a,b] C[a,b]
  • s s s
  • S [ 0 , 1 ] S[0,1] S[0,1]

注:

  • 离散距离空间 X X X可分    ⟺    \iff X X X为至多可数集
  • 如果存在不可数 A ⊂ X A\sub X AX,以及 r > 0 , s . t . ∀ x , y , d ( x , y ) ≥ r r>0,s.t.\forall x,y,d(x,y)\geq r r>0,s.t.x,y,d(x,y)r,则称 X X X是不可分的
  • l ∞ l^\infty l是不可分的
  • 可分空间的子空间是可分的

1.3 完备距离空间

定义2.4:设 ( X , d ) (X,d) (X,d)是距离空间, { x n } n = 1 ∞ ⊂ X \{x_n\}_{n=1}^\infty\sub X {xn}n=1X,若 ∀ ϵ > 0 , ∃ N \forall \epsilon>0,\exist N ϵ>0,N,当 m , n > N m,n>N m,n>N时有 d ( x m , x n ) < ϵ d(x_m,x_n)<\epsilon d(xm,xn)<ϵ,则称 { x n } n = 1 ∞ \{x_n\}_{n=1}^\infty {xn}n=1 X X X中的Cauchy列。如果任何Cauchy列都在 X X X中收敛,则称 X X X是完备的。

完备空间的例子:

  • K n \mathbb{K}^n Kn
  • C [ a , b ] C[a,b] C[a,b]
  • 所有离散距离空间
  • s s s

不完备空间的例子:

  • ( 0 , 1 ) (0,1) (0,1)在通常距离下

  • C [ 0 , 1 ] C[0,1] C[0,1]中定义距离 d 1 ( x , y ) = ∫ 0 1 ∣ x ( t ) − y ( t ) ∣ d t d_1(x,y)=\int_0^1 |x(t)-y(t)|dt d1(x,y)=01x(t)y(t)dt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值